[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

State estimation for nonlinear systems using restricted genetic optimization

  • 4 Generic Tasks of Analysis
  • Conference paper
  • First Online:
Methodology and Tools in Knowledge-Based Systems (IEA/AIE 1998)

Abstract

In this paper we describe a new nonlinear estimator for filtering systems with nonlinear process and observation models, based on the optimization with RGO (Restricted Genetic Optimization). Simulation results are used to compare the performance of this method with EKF (Extended Kalman Filter), IEKF (Iterated Extended Kalman Filter), SNF (Second-order Nonlinear Filter), SIF (Single-stage Iterated Filter) and MSF (Monte-Carlo Simulation Filter) in the presence of diferents levels of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armingol, J.M., Moreno, L.E., Garrido, S., de la Escalera, A., Salichs, M.A.: Mobile Robot Localization Using a Non-Linear Evolutionary Filter. 3rd IFAC Symp. on Intelligent Autonomous Vehicles (IAV'98)(to appear).

    Google Scholar 

  2. Bar-Shalom, Y., Fortmann, T.E.:Tracking and Data Association. The Academic Press, (1988).

    Google Scholar 

  3. Bar-Shalom, Y., Xiao-Rong, L..:Estimation and Tracking. Artech House, (1993).

    Google Scholar 

  4. Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F.: A New Approach for Filtering Nonlinear Systems. A new approachfor the nonlinear transformation of means and covariances in linear filters. IEEE Trans. on Automatic Control (1996).

    Google Scholar 

  5. Kitagawa, G.:Non-Gaussian State-Space Modeling of Nonstationary Time Series. Journal of the American Statistical Association, 82 (1987) 1032–1063.

    MATH  MathSciNet  Google Scholar 

  6. Maybeck, P.S.: Stochastic models, Estimation, and Control, volume 2. Academic Press (1982).

    Google Scholar 

  7. Tanizaki, H., Mariano, R.S.:Nonlinear Filters Based on Taylor Series Expansions. Communications in Statistics, Theory and Methods, 25 (1996) 6.

    Article  MathSciNet  Google Scholar 

  8. Wishner,R.P., Tabaczynski,J.A., Athans,M.:A Comparison of Three Non-Linear Filters. Automatica, 5 (1969) 487–496.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Angel Pasqual del Pobil Moonis Ali

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Garrido, S., Moreno, L., Balaguer, C. (1998). State estimation for nonlinear systems using restricted genetic optimization. In: Mira, J., del Pobil, A.P., Ali, M. (eds) Methodology and Tools in Knowledge-Based Systems. IEA/AIE 1998. Lecture Notes in Computer Science, vol 1415. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64582-9_808

Download citation

  • DOI: https://doi.org/10.1007/3-540-64582-9_808

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64582-5

  • Online ISBN: 978-3-540-69348-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics