[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A new type of fuzzy logic system for adaptive modelling and control

  • Conference paper
  • First Online:
Computational Intelligence Theory and Applications (Fuzzy Days 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1226))

Included in the following conference series:

Abstract

We present a new type of fuzzy controller constructed with the B-spline model and its applications in modelling and control. Unlike the other normalised parameterised set functions for defining fuzzy sets, B-spline basis functions do not necessarily span from membership value 0 to 1, but possess the property “partition of unity”. These B-spline basis functions are automatically determined after the input space is partitioned. By using “product” as fuzzy conjunction, “centroid” as defuzzification, “fuzzy singletons” for modelling output variables and adding marginal linguistic terms, fuzzy controllers can be constructed which have advantages like smoothness, automatic design and intuitive interpretation of controller parameters. Furthermore, both theoretical analysis and experimental results show the rapid convergence for tasks of data approximation and unsupervised learning with this type of fuzzy controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Bersini and G. Bontempi. Now comes the time to defuzzify neuro-fuzzy models. In Proceedings of the FLINS Workshop on Intelligent Systems and Soft Computing for Nuclear Science and Industry, pages 130–139, 1996.

    Google Scholar 

  2. T. Dokken, V. Skytt, and A. M. Ytrehus. The role of NURBS in geometric modelling and CAD/CAM. In “Advanced Geometric Modelling for Engineering Applications”, edited by Krause, F.-L.; Jansen, H. Elsevier, 1990.

    Google Scholar 

  3. J.-S. R. Jang. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on System, Man and Cybernetics, 23(3):665–685, 1993.

    Google Scholar 

  4. B. Kosko and J. A. Dickerson. Function Approximation with Additive Fuzzy Systems, chapter 12, pages 313–347. In “Theoretical Aspects of Fuzzy Control”, edited by H. T. Nyuyen, M. Sugeno and R. R. Yager, John Wiley & Sons, 1995.

    Google Scholar 

  5. E. H. Mamdani. Twenty years of fuzzy control: Experiences gained and lessons learned. IEEE International Conference on Fuzzy Systems, pages 339–344, 1993.

    Google Scholar 

  6. S. Mitaim and B. Kosko. What is the best shape of a fuzzy set in function approximation. In IEEE International Conference on Fuzzy Systems, 1996.

    Google Scholar 

  7. L. Wang. Adaptive Fuzzy Systems and Control. Prentice Hall, 1994.

    Google Scholar 

  8. L. A. Zadeh. Fuzzy logic = computing with words. IEEE Trans. on Fuzzy Systems, 4(2):103–111, 1996.

    Google Scholar 

  9. J. Zhang and A. Knoll. Constructing fuzzy controllers with B-spline models. In IEEE International Conference on Fuzzy Systems, 1996.

    Google Scholar 

  10. J. Zhang, K. V. Lee, and A. Knoll. Unsupervised learning of control spaces based on b-spline models. Submitted to IEEE International Conference on Fuzzy Systems, 1997.

    Google Scholar 

  11. J. Zhang, Y. v. Collani, and A. Knoll. On-line learning of b-spline fuzzy controller to acquire sensor-based assembly skills. In Proceedings of the IEEE International Conference on Robotics and Automation, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernd Reusch

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, J., Knoll, A., Le, K.V. (1997). A new type of fuzzy logic system for adaptive modelling and control. In: Reusch, B. (eds) Computational Intelligence Theory and Applications. Fuzzy Days 1997. Lecture Notes in Computer Science, vol 1226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62868-1_129

Download citation

  • DOI: https://doi.org/10.1007/3-540-62868-1_129

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62868-2

  • Online ISBN: 978-3-540-69031-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics