Abstract
We present a new type of fuzzy controller constructed with the B-spline model and its applications in modelling and control. Unlike the other normalised parameterised set functions for defining fuzzy sets, B-spline basis functions do not necessarily span from membership value 0 to 1, but possess the property “partition of unity”. These B-spline basis functions are automatically determined after the input space is partitioned. By using “product” as fuzzy conjunction, “centroid” as defuzzification, “fuzzy singletons” for modelling output variables and adding marginal linguistic terms, fuzzy controllers can be constructed which have advantages like smoothness, automatic design and intuitive interpretation of controller parameters. Furthermore, both theoretical analysis and experimental results show the rapid convergence for tasks of data approximation and unsupervised learning with this type of fuzzy controller.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. Bersini and G. Bontempi. Now comes the time to defuzzify neuro-fuzzy models. In Proceedings of the FLINS Workshop on Intelligent Systems and Soft Computing for Nuclear Science and Industry, pages 130–139, 1996.
T. Dokken, V. Skytt, and A. M. Ytrehus. The role of NURBS in geometric modelling and CAD/CAM. In “Advanced Geometric Modelling for Engineering Applications”, edited by Krause, F.-L.; Jansen, H. Elsevier, 1990.
J.-S. R. Jang. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on System, Man and Cybernetics, 23(3):665–685, 1993.
B. Kosko and J. A. Dickerson. Function Approximation with Additive Fuzzy Systems, chapter 12, pages 313–347. In “Theoretical Aspects of Fuzzy Control”, edited by H. T. Nyuyen, M. Sugeno and R. R. Yager, John Wiley & Sons, 1995.
E. H. Mamdani. Twenty years of fuzzy control: Experiences gained and lessons learned. IEEE International Conference on Fuzzy Systems, pages 339–344, 1993.
S. Mitaim and B. Kosko. What is the best shape of a fuzzy set in function approximation. In IEEE International Conference on Fuzzy Systems, 1996.
L. Wang. Adaptive Fuzzy Systems and Control. Prentice Hall, 1994.
L. A. Zadeh. Fuzzy logic = computing with words. IEEE Trans. on Fuzzy Systems, 4(2):103–111, 1996.
J. Zhang and A. Knoll. Constructing fuzzy controllers with B-spline models. In IEEE International Conference on Fuzzy Systems, 1996.
J. Zhang, K. V. Lee, and A. Knoll. Unsupervised learning of control spaces based on b-spline models. Submitted to IEEE International Conference on Fuzzy Systems, 1997.
J. Zhang, Y. v. Collani, and A. Knoll. On-line learning of b-spline fuzzy controller to acquire sensor-based assembly skills. In Proceedings of the IEEE International Conference on Robotics and Automation, 1997.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, J., Knoll, A., Le, K.V. (1997). A new type of fuzzy logic system for adaptive modelling and control. In: Reusch, B. (eds) Computational Intelligence Theory and Applications. Fuzzy Days 1997. Lecture Notes in Computer Science, vol 1226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62868-1_129
Download citation
DOI: https://doi.org/10.1007/3-540-62868-1_129
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62868-2
Online ISBN: 978-3-540-69031-3
eBook Packages: Springer Book Archive