[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The area determined by underdiagonal lattice paths

  • Conference paper
  • First Online:
Trees in Algebra and Programming — CAAP '96 (CAAP 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1059))

Included in the following conference series:

  • 164 Accesses

Abstract

We use the “first passage decomposition” methodology to study the area between various kinds of underdiagonal lattice paths and the main diagonal. This area is important because it is connected to the number of inversions in permutations and to the internal path length in various types of trees. We obtain the generating functions for the total area of all the lattice paths from the origin to the point (n, n). Since this method also determines the number of these paths, we are able to obtain exact results for the average area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Barcucci, R. Pinzani, and R. Sprugnoli. The Motzkin family. Pure Mathematics and Applications, 2:249–279, 1991.

    Google Scholar 

  2. L. Carlitz. Sequences, paths, ballot numbers. Fibonacci Quart., 10:531–549, 1972.

    Google Scholar 

  3. L. Carlitz and J. Riordan. Two elements lattice permutation numbers and their q-generalization. Duke J. Math., 31:371–388, 1964.

    Google Scholar 

  4. M. P. Delest and J. M. Fédou. Enumeration of skew Ferrers diagrams. Discrete Mathematics, 112:65–79, 1993.

    Google Scholar 

  5. M. P. Delest and G. Viennot. Algebraic languages and polyominoes. Theoretical Computer Science, 34:169–206, 1984.

    Google Scholar 

  6. I. Dutour and J. M. Fédou. Grammaire d'objects. Technical Report 963, LaBRI, Université Bordeaux I, 1994.

    Google Scholar 

  7. W. Feller. An introduction to probability theory and its applications. Wiley, 1950.

    Google Scholar 

  8. J. Francon and X. G. Viennot. Permutation selon les pics, creux, doubles montees, doubles descentes, nombres d'Euler et nombres de Genocchi. Discrete Mathematics, 28:21–35, 1979.

    Google Scholar 

  9. R. D. Fray and D. P. Roselle. Weighted lattice paths. Pacific Journal of Mathematics, 37:85–96, 1971.

    Google Scholar 

  10. R. D. Fray and D. P. Roselle. On weighted lattice paths. Journal of Combinatorial Theory, series A, 14:21–29, 1973.

    Google Scholar 

  11. J. Fürlinger and J. Holfbauer. q-Catalan numbers. Journal of Combinatorial Theory, Series A, 40:248–264, 1985.

    Google Scholar 

  12. J. R. Goldman. Formal languages and enumeration. Journal of Combinatorial Theory, Series A, 24:318–338, 1978.

    Google Scholar 

  13. J. R. Goldman and T. Sundquist. Lattice path enumeration by formal schema. Advances in applied mathematics, 13:216–251, 1992.

    Google Scholar 

  14. E. Goodman and T. V. Narayana. Lattice paths with diagonal steps. Canad. Math. Bull., 12:847–855, 1969.

    Google Scholar 

  15. I. P. Goulden and D. M. Jackson. Combinatorial Enumeration. John Wiley & S., 1983.

    Google Scholar 

  16. B. R. Handa and S. G. Mohanty. Higher dimensional lattice paths with diagonal steps. Discrete Mathematics, 15:137–140, 1976.

    Google Scholar 

  17. D. E. Knuth. The art of computer programming. Vol. 1–3. Addison-Wesley, 1973.

    Google Scholar 

  18. J. Labelle and Y. Yeh. Dyck paths of knight moves. Discrete applied mathematics, 24:213–221, 1989.

    Google Scholar 

  19. J. Labelle and Y. Yeh. Generalized Dyck paths. Discrete mathematics, 82:1–6, 1990.

    Google Scholar 

  20. D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri. Lattice paths with steep and shallow steps. Technical Report 16, Dipartimento di Sistemi e Informatica, Università di Firenze, 1995.

    Google Scholar 

  21. D. Merlini, R. Sprugnoli, and M. C. Verri. Algebraic and combinatorial properties of simple, coloured walks. In Proceedings of CAAP'94, volume 787 of Lecture Notes in Computer Science, pages 218–233, 1994.

    Google Scholar 

  22. S. G. Mohanty and B. R. Handa. On lattice paths with several diagonal steps. Canad. Math. Bull., 11:537–545, 1968.

    Google Scholar 

  23. L. Moser and W. Zayachkowski. Lattice paths with diagonal steps. Scripta Math., 26:223–229, 1963.

    Google Scholar 

  24. D. G. Rogers and L. W. Shapiro. Deques, trees and lattice paths. Lectures Notes in Mathematics, 884:292–303, 1981.

    Google Scholar 

  25. V. K. Rohatgi. On lattice paths with diagonals steps. Canad. Math. Bull., 7:470–472, 1964.

    Google Scholar 

  26. M. P. Schützenberger. Context-free language and pushdown automata. Information and Control, 6:246–264, 1963.

    Google Scholar 

  27. L. Takács. Some asymptotic formulas for lattice paths. Journal of statistical planning and inference, 14:123–142, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hélène Kirchner

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Merlini, D., Sprugnoli, R., Verri, M.C. (1996). The area determined by underdiagonal lattice paths. In: Kirchner, H. (eds) Trees in Algebra and Programming — CAAP '96. CAAP 1996. Lecture Notes in Computer Science, vol 1059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61064-2_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-61064-2_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61064-9

  • Online ISBN: 978-3-540-49944-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics