[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A comparative study of evolutionary algorithms for on-line parameter tracking

  • Comparison of Methods
  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN IV (PPSN 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1141))

Included in the following conference series:

Abstract

Adaptive filters are systems in digital signal processing designed to work in environments with unknown or time-varying statistical characteristics — according to non-stationary stochastic signals. In order to achieve this capability the adaptive filter's adaptation algorithm has to be able to adapt the filter to a time-dependent error criterion. I.e., given a filter topology, the filter parameters have to be estimated on-line. In this paper, a comparative study of several evolutionary algorithms — evolution strategies (ES), genetic algorithms (GA) and micro-genetic algorithms (ΜGA) — is presented for the on-line adaptation of adaptive filters. The adaptive filter's task is to predict a time-discrete and non-stationary stochastic signal. This important problem arises in a variety of applications, e.g. stochastic signal estimation, system identification and echo cancellation. The evolutionary algorithms optimize the adaptive filter's parameters on-line, with one generation corresponding to one time step of the stochastic signal. Hence, the evolutionary algorithms' ability to adapt to rapidly changing and noisy environments and to track time-varying parameters is of special interest in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, J.E.: An Analysis of the Effects of Selection in Genetic Algorithms. Ph.D., Vanderbilt University, 1989

    Google Scholar 

  2. Grefenstette, J.J.: Genetic Algorithms for Changing Environments. In: Männer, R.; Manderick, B. (Eds.): Parallel Problem Solving from Nature II. Amsterdam: Elsevier Science Publishers, pp. 137–144, 1992

    Google Scholar 

  3. Haykin, S.: Adaptive Filter Theory. Englewood Cliffs: Prentice Hall, 1986

    Google Scholar 

  4. Holland, J.H.: Adaptation in Natural and Artificial Systems. Cambridge: MIT Press, 1992

    Google Scholar 

  5. Krishnakumar, K.: Micro-Genetic Algorithms for Stationary and Non-Stationary Function Optimization. In: Intelligent Control and Adaptive Systems. Proc. of the SPIE, Vol. 1196, pp. 289–296, 1989

    Google Scholar 

  6. Neubauer, A.: Linear Signal Estimation Using Genetic Algorithms. In: Systems Analysis Modelling Simulation. Vol. 18/19, Switzerland: pp. 349–352, 1995

    Google Scholar 

  7. Neubauer, A.: Real-Coded Genetic Algorithms for Bilinear Signal Estimation. In: Schipanski, D. (Hrsg.): Tagungsband des 40. Internationalen Wissenschaftlichen Kolloquiums. Ilmenau: Band 1, pp. 347–352, 1995

    Google Scholar 

  8. Neubauer, A.: Non-Linear Adaptive Filters Based on Genetic Algorithms with Applications to Digital Signal Processing. In: Proc. of the 1995 IEEE International Conference on Evolutionary Computation. Perth: Vol. 2, pp. 527–532, 1995

    Article  Google Scholar 

  9. Neubauer, A.: Genetic Algorithms for Non-Linear Adaptive Filters in Digital Signal Processing (Invited paper). In: Proc. of the 1996 ACM Symposium on Applied Computing. Philadelphia: pp. 519–522, 1996

    Google Scholar 

  10. Rechenberg, I.: Evolutionsstrategie '94. Werkstatt Bionik und Evolutionstechnik, Band 1, Stuttgart: frommann-holzboog, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans-Michael Voigt Werner Ebeling Ingo Rechenberg Hans-Paul Schwefel

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neubauer, A. (1996). A comparative study of evolutionary algorithms for on-line parameter tracking. In: Voigt, HM., Ebeling, W., Rechenberg, I., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN IV. PPSN 1996. Lecture Notes in Computer Science, vol 1141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61723-X_1026

Download citation

  • DOI: https://doi.org/10.1007/3-540-61723-X_1026

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61723-5

  • Online ISBN: 978-3-540-70668-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics