Abstract
Evolutionary and adaptive search (AS) strategies for diverse multi-level search across a preliminary, whole-system design hierarchy defined by both discrete and continuous variable parameters is described. Such strategies provide high-level decision support when integrated with preliminary design software describing the major elements of an engineering system. Initial work has involved a Structured Genetic Algorithm (stGA) with appropriate mutation regimes to encourage search diversity. The shortcomings of the stGA approach are identified and a dual agent strategy is introduced (GAANT). Results are compared to those of the stGA. Appropriate communication between search agents concurrently manipulating the discrete and continuous variable parameter sets results in a more efficient search across the hierarchy than that achieved by the stGA whilst also simplifying the chromosomal representation. This simplification allows the further development of the preliminary design hierarchy in terms of complexity. The technique therefore represents a significant contribution to preliminary design where multi-level, mixed discrete/continuous parameter problems can be prevalent.
Preview
Unable to display preview. Download preview PDF.
References
Parmee I. C., Denham M. J. (1994), “The Integration of Adaptive Search Techniques with Current Engineering Design Practice.” Procs. of Adaptive Computing in Engineering Design and Control; University of Plymouth, UK; 1994.
Dasgupta D., MacGregor D., “A Structured Genetic Algorithm.” Research Report KBS-2-91, University of Strathclyde, UK.
Parmee I. C., ‘Diverse Evolutionary Search for Preliminary Whole System Design.’ Procs. 4th International Conference on AI in Civil and Structural Engineering, Cambridge University, Civil-Comp Press, August 1995
Goldberg D. E., “Genetic Algorithms in Search, Optimisation & Machine Learning”. Addison-Wesley Publishing Co., Reading, Massachusetts, 1989
Coloni A., Dorigo M., Maniezzo V. An Investigation of Some Properties of the Ant Algorithm. Procs. PPSN '92, Elsevier Publishing pp 509–520.
Bilchev G., Parmee I. C., “The Ant Colony Metaphor for Searching Continuous Design Spaces.” Procs. AISB Workshop on Evolutionary Computing; Lecture Notes in Computer Science 993, Springer-Verlag, ISBN 3 540 60469 3, 1995.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Parmee, I.C. (1996). The development of a dual-agent strategy for efficient search across whole system engineering design hierarchies. In: Voigt, HM., Ebeling, W., Rechenberg, I., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN IV. PPSN 1996. Lecture Notes in Computer Science, vol 1141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61723-X_1016
Download citation
DOI: https://doi.org/10.1007/3-540-61723-X_1016
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61723-5
Online ISBN: 978-3-540-70668-7
eBook Packages: Springer Book Archive