Abstract
We address the problem of oceanographic data regression with constrainted Kohonen self-organizing maps. Using constrainted topological mapping algorithm on real data, we show that it is well suited to geographic needs. It appears as an elegant way to overcome uneven spatial sampling problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Najafi Cherkasski. Constrainted topological mapping for nonparametric regression analysis. Neural Network, 4:27–40, 1991.
Hardle. Applied Nonparametric Regression. Cambridge University Press, Cambridge, 1990.
Hardle. Smoothing techniques with implementation in S. Springer-Verlag, New York, 1991.
Kohonen. Self-organisation and associative memory. Springer-Verlag, 3rd edition, 1995.
Schulten Ritter, Martinetz. Neural Computation and Self-Organizing Maps, An Introduction. Addison-Wesley Publishing Company, 1992.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Daigremont, P., de Lassus, H., Badran, F., Thiria, S. (1996). Regression by topological map: Application on real data. In: von der Malsburg, C., von Seelen, W., Vorbrüggen, J.C., Sendhoff, B. (eds) Artificial Neural Networks — ICANN 96. ICANN 1996. Lecture Notes in Computer Science, vol 1112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61510-5_34
Download citation
DOI: https://doi.org/10.1007/3-540-61510-5_34
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61510-1
Online ISBN: 978-3-540-68684-2
eBook Packages: Springer Book Archive