[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

How fast can neuronal algorithms match patterns?

  • Oral Presentations: Theory Theory VII: Unsupervised Learning
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN 96 (ICANN 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1112))

Included in the following conference series:

  • 223 Accesses

Abstract

We investigate the convergence speed of the Self Organizing Map (SOM) and Dynamic Link Matching (DLM) on a benchmark problem for the solution of which both algorithms are good candidates. We show that the SOM needs a large number of simple update steps and DLM a small number of complicated ones. A comparison of the actual number of floating point operations hints at an exponential vs. polynomial scaling behavior with increased pattern size. DLM turned out to be much less sensitive to parameter changes than the SOM.

Funding from the HCM network “Parallel modeling of neural operators for pattern recognition” by the European Community is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.P. Würtz. Multilayer Dynamic Link Networks for Establishing Image Point Correspondences and Visual Object Recognition, volume 41 of Reihe Physik. Verlag Harri Deutsch, Thun, Frankfurt am Main, 1995.

    Google Scholar 

  2. W. Konen and C.v.d. Malsburg. Learning to generalize from single examples in the dynamic link architecture. Neural Computation, 5:719–735, 1993.

    Google Scholar 

  3. T.J. Sejnowski, P.K. Kienker, and G.E. Hinton. Learning symmetry groups with hidden units: Beyond the perceptron. Physica D, 22:260–275, 1986.

    Google Scholar 

  4. D.J. Willshaw and C. v.d. Malsburg. How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society, London B, 194:431–445, 1976.

    Google Scholar 

  5. W. Konen, T. Maurer, and C. v.d. Malsburg. A fast dynamic link matching algorithm for invariant pattern recognition. Neural Networks, 7(6/7):1019–1030, 1994.

    Google Scholar 

  6. T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43:59–69, 1982.

    Google Scholar 

  7. T. Kohonen. The self-organizing map. Proc. IEEE, 78:1464–1480, 1990.

    Google Scholar 

  8. K.-O. Behrmann. Leistungsuntersuchungen des Dynamischen-Link-Matchings und Vergleich mit dem Kohonen-Algorithmus. Technical Report IR-INI 93-05, Ruhr-Universität Bochum, 1993.

    Google Scholar 

  9. R.P. Würtz, W. Konen, and K.-O. Behrmann. On the performance of neuronal matching algorithms. Manuscript in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf P. Würtz .

Editor information

Christoph von der Malsburg Werner von Seelen Jan C. Vorbrüggen Bernhard Sendhoff

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Würtz, R.P., Konen, W., Behrmann, KO. (1996). How fast can neuronal algorithms match patterns?. In: von der Malsburg, C., von Seelen, W., Vorbrüggen, J.C., Sendhoff, B. (eds) Artificial Neural Networks — ICANN 96. ICANN 1996. Lecture Notes in Computer Science, vol 1112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61510-5_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-61510-5_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61510-1

  • Online ISBN: 978-3-540-68684-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics