[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A neural clustering algorithm for estimating visible articulatory trajectory

  • Poster Presentations 3
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN 96 (ICANN 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1112))

Included in the following conference series:

Abstract

The bimodal acoustic-visual nature of speech establishes sound correlations between its audio component and the corresponding articulatory information associated to the time-varying geometry of the vocal tract. In this paper we propose an estimation structure consisting of a simplified Time-Delay Neural Network (TDNN) working on 4–5 dimensional cepstrum trajectories provided by a preceding clusterization layer based on a Self Organizing Map (SOM). The use of this pre-processing layer has allowed an effective non-linear clusterization of cepstrum vectors thus simplifying of one order the complexity of the resulting system while maintaining unchanged the global estimation performances. The achieved results are shown in terms estimation precision and robustness with reference to previously published results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F.Lavagetto,”Converting Speech into Lip Movements: A Multimedia Telephone for Hard of Hearing People” IEEE Trans. on RE, Vol.3, n.1, 1995, pp. 90–102.

    Google Scholar 

  2. A.Q. Summerfield, ”Use of Visual Information for Phonetic Perception”, Phonetica, Vol.36, pp.314–331, 1979.

    Google Scholar 

  3. E. Owens, B. Blazek, ”Visems Observed by Hearing-Impaired and Normal-Hearing Adult Viewers”, Journal of Speech and Hearing Research, vol.28, pp.381–393, 1985.

    Google Scholar 

  4. C.A. Fowler ”Coarticulation and Theories of Extrinsic Timing”, Journal of Phonetics, 1980.

    Google Scholar 

  5. O. Fujimura ”Elementary gestures and temporal organization. What does an articulatory constraint means?” in The cognitive representation of speech, North Holland Amsterdam, pp. 101–110, 1981.

    Google Scholar 

  6. A.P. Benguerel, M.K. Pichora-Fuller, ”Coarticulation Effects in Lipreading”, Journal of Speech and Hearing Research, Vol.25, pp.600–607, 1982.

    Google Scholar 

  7. S. Morishima, H. Harashima, ”A Media Conversion from Speech to Facial Image for Intelligent Man-Machine Interface”, IEEE Journal on Sel. Areas in Comm.,vol.9, N.4, pp. 594–600, 1991.

    Google Scholar 

  8. B.P. Yuhas, M.H. Goldstein Jr. and T.J. Sejnowski, ”Integration of Acoustic and Visual Speech Signal Using Neural Networks”, IEEE Communications Magazine, pp. 65–71, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christoph von der Malsburg Werner von Seelen Jan C. Vorbrüggen Bernhard Sendhoff

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vignoli, F., Curinga, S., Lavagetto, F. (1996). A neural clustering algorithm for estimating visible articulatory trajectory. In: von der Malsburg, C., von Seelen, W., Vorbrüggen, J.C., Sendhoff, B. (eds) Artificial Neural Networks — ICANN 96. ICANN 1996. Lecture Notes in Computer Science, vol 1112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61510-5_145

Download citation

  • DOI: https://doi.org/10.1007/3-540-61510-5_145

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61510-1

  • Online ISBN: 978-3-540-68684-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics