Preview
Unable to display preview. Download preview PDF.
References
Ulrich Berger. Personal email to Thomas Streicher, April 1994.
Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional for typed λ-calculus. In Proceedings of the Sixth Annual Symposium on Logic in Computer Science, pages 202–211, 1991.
Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and normalization proofs. Preliminary Proceedings of the 1993 TYPES Workshop, Nijmegen (accepted for publication in Mathematical Structures in Computer Science), 1993.
Thierry Coquand. An algorithm for testing conversion in type theory. In Logical Frameworks. Cambridge University Press, 1991.
Catarina Coquand. From Semantics to Rules: a Machine Assisted Analysis. In Börger, Gurevich, and Meinke, editors, CSL'93, pages 91–105. Springer-Verlag, LNCS 832, 1994.
Neil Ghani. Βη-equality for coproducts. In Mariangiola Dezani-Ciancaglini and Gordon Plotkin, editors, Typed Lambda Calculi and Applications, number 902 in LNCS, pages 171–185, 1995.
Gérard Huet and Amokrane SaÏbi. Constructive category theory. In Peter Dybjer and Randy Pollack, editors, Informal proceedings of the joint CLICS-TYPES workshop on categories and type theory, 1995.
Saul A. Kripke. Semantical analysis of intutionistic logic I. In J.N. Crossley and M.A.E. Dummett, editors, Formal systems and recursive functions. North Holland, 1965.
Joachim Lambek and Phil Scott. Introduction to Higher Order Categorical Logic. Cambridge University Press, 1986.
Per Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In H. E. Rose and J. C. Shepherdson, editors, Logic Colloquium 1973, pages 73–118, Amsterdam, 1975. North-Holland Publishing Company.
John C. Mitchell and Eugenio Moggi. Kripke-style models for typed lambda calculus. Annals of Pure and Applied Logic, 51:99–124, 1991.
Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-Löf's Type Theory. An Introduction. Oxford University Press, 1990.
A. S. Troelstra and D. van Dalen. Constructivism in Mathematics. An Introduction, volume II. North-Holland, 1988.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Altenkirch, T., Hofmann, M., Streicher, T. (1995). Categorical reconstruction of a reduction free normalization proof. In: Pitt, D., Rydeheard, D.E., Johnstone, P. (eds) Category Theory and Computer Science. CTCS 1995. Lecture Notes in Computer Science, vol 953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60164-3_27
Download citation
DOI: https://doi.org/10.1007/3-540-60164-3_27
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60164-7
Online ISBN: 978-3-540-44661-3
eBook Packages: Springer Book Archive