Abstract
Formal Concept Analysis, developed during the last fifteen years, has been based on the dyadic understanding of a concept constituted by its extension and its intension. The pragmatic philosophy of Charles S. Peirce with his three universal categories, and experiences in data analysis, have suggested a triadic approach to Formal Concept Analysis. This approach starts with the primitive notion of a triadic context defined as a quadruple (G, M, B, Y) where G, M, and B are sets and Y is a ternary relation between G, M, and B, i.e. Y ⊑ G×M×B; the elements of G, M, and B are called objects, attributes, and conditions, respectively, and (g, m,b) ε Y is read: the object g has the attribute m under (or according to) the condition b. A triadic concept of a triadic context (G, M, B, Y) is defined as a triple (A1, A2, A3) with A1× A2sx A3 ⊑ Y which is maximal with respect to component-wise inclusion. The triadic concepts are structured by three quasiorders given by the inclusion order within each of the three components. In analogy to the dyadic case, we discuss how the ordinal structure of the triadic concepts of a triadic context can be analysed and graphically represented. A basic result is that those structures can be understood order-theoretically as “complete trilattices” up to isomorphism.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Arnaud, P. Nicole: La logique ou I'art de penser. Paris 1662.
Deutsches Institut für Normung: DIN 2330; Begriffe und Benennungen: Allgemeine Grundsätze. Beuth, Berlin, Köln 1979.
B. Ganter: Algorithmen zur Formalen Begriffsanalyse. In: B. Ganter, R. Wille, K.E. Wolff: Beiträge zur Begriffsanalyse. B.I.-Wissenschaftsverlag, Mannheim 1987, 241–254.
B. Ganter, R. Krauße: TRICEPT — Programm zur triadischen Begriffs-analyse. Institut für Algebra, TU Dresden 1994.
B. Ganter, R. Wille: Formale Begriffsanalyse: Mathematische Grundlagen. Springer, Heidelberg (in preparation)
G. Gigerenzer: Messung als Modellbildung in der Psychologie. Reinhardt Verlag, München, Basel 1981.
D.H. Krantz, R.D. Luce, P. Suppes, A. Tversky: Foundations of measurement. Vol 1. Academic Press, San Diego 1971.
P. Krausser: Die drei fundamentalen Strukturkategorien bei Charles S. Peirce. Philosophia Naturalis 6 (1960), 3–31.
S. Krolak-Schwerdt, P. Orlik, B. Ganter: TRIPAT: a model for analyzing three-mode binary data. In: H.-H. Bock, W. Lenski, M.M. Richter (eds.): Information systems and data analysis. Springer, Berlin-Heidelberg 1994, 298–307.
J. Malcolm: A reconsideration of the identity and inherence theories of the copula. J. Hist. Philos. 17 (1979), 383–400.
R. Marty: Foliated Semantic networks: concepts, facts, qualities. Computers & Mathematics with Applications 23 (1992), 697–696; reprinted in: F. Lehmann (ed.): Semantic networks in artificial intelligence. Pergamon Press, Oxford 1992.
Ch. S. Peirce: Collected Papers. Harvard Univ. Press, Cambridge 1931–35.
H. Weidemann: Prädikation. In: Historisches Wörterbuch der Philosophie. Band 7. Schwabe, Basel 1989, 1194–1208.
R. Wille: Restructuring lattice theory: an approach based on hierarchies of concepts. In: I. Rival (ed.): Ordered sets. Reidel, Dordrecht-Boston 1982, 445–470.
R. Wille: Bedeutungen von Begriffsverbänden. In: B. Ganter, R. Wille, K.E. Wolff (Hrsg.): Beiträge zur Begriffsanalyse. B.I.-Wissenschaftsverlag, Mannheim 1987, 161–211.
R. Wille: Lattices in data analysis: how to draw them with a computer. In: I. Rival (ed.): Algorithms and order. Kluwer: Dordrecht, Boston 1989, 33–58.
R. Wille: Knowledge acquisition by methods of formal concept analysis. In: E. Diday (ed.): Data analysis, learning symbolic and numeric knowledge. Nova Science Publ., New York, Budapest 1989, 365–380.
R. Wille: Concept lattices and conceptual knowledge systems. Computers & Mathematics with Applications. 23 (1992), 493–515.
R. Wille: Begriffliche Datensysteme als Werkzeug der Wissenskommunikation. In: H.H. Zimmermann, H.-D. Luckhardt, A. Schulz (Hrsg.): Mensch und Maschine — Informationelle Schnittsstellen der Kommunikation. Universitätsverlag Konstanz, Konstanz 1992, 63–73.
R. Wille: Plädoyer für eine philosophische Grundlegung der Begrifflichen Wissensverarbeitung. In: R. Wille, M. Zickwolff (Hrsg.): Begriffliche Wissensverarbeitung: Grundfragen und Aufgaben. B.I.-Wissenschaftsverlag, Mannheim 1994, 11–25.
R. Wille: Restructuring mathematical logic: an approach based on Peirce's pragmatism. In: P. Agliano, A. Ursini (eds.): International Conference on Logic and Algebra, Siena 1994 (to appear)
R. Wille: The basic theorem of triadic concept analysis. Order (to appear)
R. Wille, M. Zickwolff: Grundlegung einer Triadischen Begriffsanalyse (in preparation)
U. Wille: Geometrie representation of ordinal contexts. Doctoral thesis, Univ. Gießen 1995.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lehmann, F., Wille, R. (1995). A triadic approach to formal concept analysis. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds) Conceptual Structures: Applications, Implementation and Theory. ICCS 1995. Lecture Notes in Computer Science, vol 954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60161-9_27
Download citation
DOI: https://doi.org/10.1007/3-540-60161-9_27
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60161-6
Online ISBN: 978-3-540-49539-0
eBook Packages: Springer Book Archive