[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Binary space partitions for sets of hyperrectangles

  • Algorithms
  • Conference paper
  • First Online:
Algorithms, Concurrency and Knowledge (ACSC 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1023))

Included in the following conference series:

Abstract

In this paper we prove the existence of binary space partitions (BSPs) with linear size for sets of axis-parallel boxes in three dimensional space under certain conditions that are often satisfied in practical situations. In particular, we give an O(n log n) time algorithm to construct a BSP tree with linear size for a set S of axis-parallel boxes where the ratio between the lengths of the longest and the shortest edges of boxes in S is bounded by a constant. The BSP tree constructed is balanced if S has a constant profile.

In view of the lower bound of Ω(n3/2) for the size of BSPs for set of n line segments (or boxes) in ℝ3, this is the first class of high dimensional objects that are found, for which linear size BSPs exist. We generalize the results for sets of hyperrectangles in dimension greater than three and extend our method also for a useful class of d-dimensional fat objects. All the algorithms for constructing linear size binary space partitions presented in this paper are simple enough to be favorable for implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Chazelle. Filtering search: a new approach to query-answering. SIAM J. Comput., 15:703–724, 1986.

    Google Scholar 

  2. F. d'Amore and P. G. Franciosa. On the optimal binary plane partition for sets of isothetic rectangles. Inform. Process. Lett., 44:255–259, 1992.

    Google Scholar 

  3. M. de Berg. Linear size binary space partitions for fat objects. To appear, Dept. of Computer Science, Utrecht University, the Netherlands, 1995. (accepted for Euro. Symp. on Algorithms, ESA'95).

    Google Scholar 

  4. M. de Berg and M. de Groot. Binary space partitions for sets of cubes. In Abstracts 10th European Workshop Comput. Geom. (CG'94), pages 84–88, 1994.

    Google Scholar 

  5. M. de Berg, M. de Groot, and M. Overmars. New results on binary space partitions in the plane. In Proc. 4th Scand. Workshop Algorithm Theory, volume 824 of Lecture Notes in Computer Science, pages 61–72, 1994.

    Google Scholar 

  6. H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West Germany, 1987.

    Google Scholar 

  7. J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, and Phillips. Introduction to Computer Graphics. Addison-Wesley, Reading, MA, 1993.

    Google Scholar 

  8. H. Fuchs, Z. M. Kedem, and B. Naylor. On visible surface generation by a priori tree structures. Comput. Graph., 14(3):124–133, 1980.

    Google Scholar 

  9. E. M. McCreight. Priority search trees. SIAM J. Comput., 14:257–276, 1985.

    Google Scholar 

  10. B. Naylor, J. A. Amatodes, and W. Thibault. Merging BSP trees yields polyhedral set operations. Comput. Graph., 24(4):115–124, August 1990.

    Google Scholar 

  11. V. H. Nguyen, T. Roos, and P. Widmayer. Balanced cuts of a set of hyperrectangles. In Proc. 5th Canad. Conf. Comput Geom., pages 121–126, Waterloo, Canada, 1993.

    Google Scholar 

  12. J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid File: An Adaptable, Symmetric Multikey File Structure. ACM Trans. on Database Systems, 9:38–71, 1984.

    Google Scholar 

  13. M. S. Paterson and F. F. Yao. Efficient binary space partitions for hidden-surface removal and solid modeling. Discrete Comput. Geom., 5:485–503, 1990.

    Google Scholar 

  14. M. S. Paterson and F. F. Yao. Optimal binary space partitions for orthogonal objects. J. Algorithms, 13:99–113, 1992.

    Google Scholar 

  15. H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley, 1990.

    Google Scholar 

  16. R. A. Schumaker, R. Brand, M. Gilliland, and W. Sharp. Study for applying computer-generated images to visual simulation. Report AFHRL-TR-69-14, U.S. Air Force Human Resources Lab., 1969. cited in [8].

    Google Scholar 

  17. I. E. Sutherland, R. F. Sproull, and R. A. Schumaker. A characterization of ten hidden surface algorithms. ACM Comput. Surv., 6:1–55, 1974. cited in [8].

    Google Scholar 

  18. S. Teller and P. Hanrahan. Global visibility algorithms for illumination computations. In Proc. SIGGRAPH '93, pages 239–246, 1993.

    Google Scholar 

  19. W. C. Thibault and B. F. Naylor. Set operations on polyhedra using binary space partitioning trees. In Proc. SIGGRAPH'87, pages 153–162, 1987.

    Google Scholar 

  20. A. F. van der Stappen, D. Halperin, and M. H. Overmars. The complexity of the free space for a robot moving amidst fat obstacles. Comput. Geom. Theory and Appl., 3:353–373, 1993.

    Google Scholar 

  21. P. van Oosterom. A modified binary space partition for geographic information systems. Int. J. GIS, 4(2):133–146, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kanchana Kanchanasut Jean-Jacques Lévy

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, V.H., Widmayer, P. (1995). Binary space partitions for sets of hyperrectangles. In: Kanchanasut, K., Lévy, JJ. (eds) Algorithms, Concurrency and Knowledge. ACSC 1995. Lecture Notes in Computer Science, vol 1023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60688-2_35

Download citation

  • DOI: https://doi.org/10.1007/3-540-60688-2_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60688-8

  • Online ISBN: 978-3-540-49262-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics