[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Orthogonal queries in segments and triangles

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 834))

Included in the following conference series:

  • 141 Accesses

Abstract

We present an efficient orthogonal query data structure in a set of segments or triangles in space. The most important feature of our results is that the efficiency of the data structure is highly dependent on the geometric discrete parameters of the input set, as well as its cardinality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Agarwal, Ray Shooting and Other Applications of Spanning Trees with Low Stabbing Number, Proc. 5th ACM Comput. Geom., (1989), 315–325.

    Google Scholar 

  2. M. Atallah, Some Dynamic Computational Geometry Problems, Computers and Mathematics with Applications, 11 (1985), 1171–1181.

    Article  Google Scholar 

  3. B. Chazelle, Reporting and Counting Segment Intersections, J. Comput. System Sci. 32 (1986) 156–182.

    Google Scholar 

  4. B. Chazelle, Filtering Search: A New Approach to Query-Answering SIAM J. Comput. 15 (1986) 703–724.

    Article  Google Scholar 

  5. B. Chazelle, Lower Bounds on the Complexity of Polytope Range Searching, J. Amer. Math. Sci.,2 (1989) 637–666.

    Google Scholar 

  6. B. Chazelle, Lower Bounds for Orthogonal Range Searching I. The Reporting Case, J. ACM,37 (1990) 200–212.

    Article  Google Scholar 

  7. D. Dobkin and H. Edelsbrunner, Space Searching for Intersecting Objects, Proc. 25th IEEE FOCS (1984), 387–392.

    Google Scholar 

  8. J. Driscoll, N. Sarnak, D. Slator, and R. Tarjan, Making Data Structure Persistent, Proc. 18th ACM STOC (1986), 109–120.

    Google Scholar 

  9. M. Edahiro, K. Tanaka, T. Hoshiuo, and T. Asano, A Bucketing Algorithm for the Orthogonal Segment Intersection Search Problems and Its Practical Efficiency, Proc. 3rd ACM Comput. Geom. (1987) 258–267.

    Google Scholar 

  10. T. Hirata, J. Matoušek, X. Tan, and T. Tokuyama, Complexity of Projected Images of Convex Subdivisions, Proc. 4th CCCG (1992) 121–126.

    Google Scholar 

  11. K. Kuse, private communication.

    Google Scholar 

  12. G. Lueker, A Data Structure for Orthogonal Range Queries, Proc. 19th IEEE FOCS (1978), 28–34.

    Google Scholar 

  13. K. Mulmuley, A Fast Planar Partition Algorithm, II, Proc. 5th ACM Comput. Geom. (1989), 33–43.

    Google Scholar 

  14. J. Matoušek, Efficient Partition Trees, Proc. 7th ACM Comput. Geom. (1991), 1–9.

    Google Scholar 

  15. J. Matousek, Range Searching with Efficient Hierarchical Cuttings, Proc. 8th ACM Comput. Geom. (1992), 276–285.

    Google Scholar 

  16. F. Preparata and M. Shamos, Computational Geometry, an Introduction, 2nd edition, Springer-Verlag (1988).

    Google Scholar 

  17. A.C. Yao, Space-Time Tradeoff for Answering Range Queries, Proc. 14th ACM STOC (1982), 128–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ding-Zhu Du Xiang-Sun Zhang

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tokuyama, T. (1994). Orthogonal queries in segments and triangles. In: Du, DZ., Zhang, XS. (eds) Algorithms and Computation. ISAAC 1994. Lecture Notes in Computer Science, vol 834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58325-4_217

Download citation

  • DOI: https://doi.org/10.1007/3-540-58325-4_217

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58325-7

  • Online ISBN: 978-3-540-48653-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics