[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A linear-time algorithm for computing characteristic strings

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 834))

Included in the following conference series:

Abstract

Let S be a finite set of strings and let T be a subset of S. A characteristic string of T under S is a string that is a common substring of T and that is not a substring of any string in S-T. We present a lineartime algorithm for deciding whether or not there exists a characteristic string of T under S. If such a string exists, then the algorithm returns all the shortest characteristic strings of T under S in that time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Hasidume, M. Ito, M. Nakanishi and A. Hashimoto: “A linear-time algorithm for computing a shortest characteristic substring of strings” (in Japanese), IEICE Technical Report, COMP93-36, pp.39–46 (July 1993).

    Google Scholar 

  2. D.G. Higgins and P.M. Sharp: “Fast and sensitive multiple sequence alignments on a microcomputer”, CABIOS, 5, 2, pp.151–153 (Apr. 1989).

    PubMed  Google Scholar 

  3. M.Ito, K. Shimizu, M. Nakanishi and A. Hashimoto: “Polynomial-time algorithms for computing characteristic strings,” Proc. of 5th Symposium on Combinatorial Pattern Matching, To apprear (June 1994).

    Google Scholar 

  4. G.M. Landau and U.Vishkin: “Introducing efficient parallelism into approximate string matching and a new serial algorithm,” Proc. 18th ACM Symp. on Theory of Computing, pp.220–230 (May 1986).

    Google Scholar 

  5. V.I. Levenshtein: “Binary codes capable of correcting deletions, insertions, and reversals”, Cybernetics and Control Theory, 10, 8, pp.707–710(1966)

    Google Scholar 

  6. A.J.L. Macario and E.C. de Macario: “Gene Probes for Bacteria,” Academic Press (1990)

    Google Scholar 

  7. E.M. McCreight: “A space-economical suffix tree construction algorithm”, Journal of ACM, 23, 2, pp.262–272 (Apr. 1976).

    Google Scholar 

  8. M. Nasu, K. Shimada, S. Inaoka, K. Tani and M. Kondo: “ Natural bacterial populations in river water determined by 16S and 23S rRNA-targeted oligonucleotide probes,” (submitted to Biomedical and Environmental Sciences).

    Google Scholar 

  9. W.R. Pearson and D.J. Lipman: “Improved tools for biological sequence comparison”, Proc. Natl. Acad. Sci. USA, 85, pp.2444–2448 (Apr. 1988).

    PubMed  Google Scholar 

  10. P. Weiner: “Linear pattern matching algorithms,” Proc. IEEE 14th Symposium on Switching and Automata Theory, pp.1–11 (1973)

    Google Scholar 

  11. “Genome Databases,” Science, 254 (Oct. 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ding-Zhu Du Xiang-Sun Zhang

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakanishi, M., Hasidume, M., Ito, M., Hashimoto, A. (1994). A linear-time algorithm for computing characteristic strings. In: Du, DZ., Zhang, XS. (eds) Algorithms and Computation. ISAAC 1994. Lecture Notes in Computer Science, vol 834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58325-4_195

Download citation

  • DOI: https://doi.org/10.1007/3-540-58325-4_195

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58325-7

  • Online ISBN: 978-3-540-48653-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics