Abstract
The Spectrum project concentrates on the process of developing well-structured, precise system specifications. Spectrum is a specification language, with a deduction calculus and a development methodology. An informal presentation of the Spectrum language with many examples illustrating its properties is given in [2, 3]. The purpose of this article is to describe its formal semantics.
This work is sponsored by the German Ministry of Research and Technology (BMFT) as part of the compound project “KORSO — Korrekte Software” and by the German Research Community (DFG) project SPECTRUM.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Broy. Requirement and Design Specification for Distributed Systems. LNCS, 335:33–62, 1988.
M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Regensburger, O. Slotosch, and K. Stølen. The Requirement and Design Secification Language Spectrum. An Informal Introduction. Version 1.0. Part I. Technical Report TUM-I9311, Technische Universität München. Institut für Informatik, May 1993.
M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Regensburger, O. Slotosch, and K. Stølen. The Requirement and Design Secification Language Spectrum. An Informal Introduction. Version 1.0. Part II. Technical Report TUM-I9312, Technische Universität München. Institut für Informatik, May 1993.
R. Milner C Wadsworth M. Gordon. Edinburgh LCF: A Mechanised Logic of Computation, volume 78 of LNCS. Springer, 1979.
J. Camilleri. The HOL System Description, Version 1 for HOL 88.1.10. Technical report, Cambridge Research Center, 1989.
L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction, and Polymorphism. ACM Computing Surveys, 17(4):471–523, December 1985.
M.-C. Gaudel. Towards Structured Algebraic Specifications. ESPRIT ‘85', Status Report of Continuing Work (North-Holland), pages 493–510, 1986.
M. Gogolla. Partially Ordered Sorts in Algebraic Specifications. In B. Courcelle, editor, Proc. 9th CAAP 1984, Bordeaux. Cambridge University Press, 1976.
J.A. Goguen and J. Meseguer. Order-Sorted Algebra Solves the Constructor-Selector, Multiple Representation and Coercion Problems. In Logic in Computer Science, IEEE, 1987.
R. Grosu and F. Regensburger. The Logical Framework of spectrum. Technical Report TUM-I9402, Institut für Informatik, Technische-Universität München, 1994.
C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT Press, 1992.
J.V. Guttag, J.J. Horning, and J.M. Wing. Larch in Five Easy Pieces. Technical report, Digital, Systems Research Center, Paolo Alto, California, 1985.
P. Hudak, S. Peyton Jones, and P. Wadler, editors. Report on the Programming Language Haskell, A Non-strict Purely Functional Language (Version 1.2). ACM SIGPLAN Notices, May 1992.
J. C. Mitchell. Introduction to Programming Language Theory. MIT Press, 1993.
J.C. Mitchell. Type Systems for Programming Languages. In Handbook of Theoretical Computer Science, chapter 8, pages 365–458. Elsevier Science Publisher, 1990.
T. Nipkow. Order-Sorted Polymorphism in Isabelle. In G. Huet and G. Plotkin, editors, Logical Environments, pages 164–188. CUP, 1993.
Tobias Nipkow and Christian Prehofer. Type checking type classes. In Proc. 20th ACM Symp. Principles of Programming Languages, pages 409–418, 1993.
F. Regensburger. HOLCF: Eine konservative Erweiterung von HOL durch LCF. PhD thesis, Technische Universität München, 1994. to appear.
D. Sannella and M. Wirsing. A Kernel Language for Algebraic Specification and Implementation. Technical Report CSR-131-83, University of Edinburgh, Edinburgh EH9 3JZ, September 1983.
G. Smolka, W. Nutt, J. Goguen, and J. Meseguer. Order-Sorted Equational Computation. In Resolution of Equations in Algebraic Structures. Academic Press, 1989.
C. Strachey. Fundamental Concepts in Programming Languages. In Lecture Notes for International Summer School in Computer Programming, Copenhagen, 1967.
P. Wadler and S. Blott. How to Make Ad-hoc Polymorphism Less Ad hoc. In 16th ACM Symposium on Principles of Programming Languages, pages 60–76, 1989.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grosu, R., Regensburger, F. (1994). The semantics of SPECTRUM. In: Heering, J., Meinke, K., Möller, B., Nipkow, T. (eds) Higher-Order Algebra, Logic, and Term Rewriting. HOA 1993. Lecture Notes in Computer Science, vol 816. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58233-9_7
Download citation
DOI: https://doi.org/10.1007/3-540-58233-9_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58233-5
Online ISBN: 978-3-540-48579-7
eBook Packages: Springer Book Archive