Abstract
This paper presents an overview of the capabilities of spiking neurons in processing complex information. We propose a flexible neuron model (the Spike Response Model), that is amenable to both analytic treatment and straightforward numerical simulation, and analyze the dynamics of a large network consisting of these neurons. We also present tools that, given some homogeneity, enable one to analytically treat the dynamical response of a network, a highly nonlinear system. Finally, we evaluate the underlying mechanisms, such as the dependence upon the axonal delays, the local inhibition, structural feedback, and discuss applications to associative feature linking, pattern segmentation, and context-sensitive binding.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amit, D.J., Gutfreund, H., Sompolinsky, H.: Statistical mechanics of neural networks near saturation. Ann Phys (NY) 173 (1987) 30–67
Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J.: Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol. Cybern. 60 (1988) 121–130
Eckhorn, R., Brosch, M.: Synchronous oscillatory activities between areas 17 and 18 in the cat's visual cortex. J. Neurophysiol. (1994) in press.
Eckhorn, R., Obermueller, A.: Single neurons are differently involved in stimulus-specific oscillations in cat visual cortex. Exp. Brain Res. 95 (1993) 177–182
Eckhorn, R., Reitboeck, H.J., Arndt, M., Dicke, P.: Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex. Neur. Comp. 2 (1990) 293–307
Engel, A.K., König, P., Kreiter, K., Singer, W.: Interhemispheric synchronization of oscillatory neural responses in cat visual cortex. Science 252 (1991) 1177–1179
Engel, A.K., König, P., Singer, W.: Direct physiological evidence for scene segmentation by temporal coding. Proc. Natl. Acad. Sci. USA 88 (1991) 9136–9140
Felleman, D.J., van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1 (1991) 1–47
Fuentes, U.: Einflu\ der Schicht-und Arealstruktur auf die Informationsverar-beitung im Cortex. Diplomarbeit, Technische Universität München, 1993.
Gerstner, W., van Hemmen, J.L.: Associative memory in a network of 'spiking’ neurons. Network 3 (1992) 139–164
Gerstner, W., van Hemmen, J.L.: Universality in neural networks: The importance of the mean firing rate. Biol. Cybern. 67 (1992) 195–205
Gerstner, W., van Hemmen, J.L.: Coding and information processing in neural networks. In E. Domany, J.L. van Hemmen, and K. Schulten, Editors, Models of neural networks II. Springer, New York., 1994. Chap. 1.
Gerstner, W., Ritz, R., van Hemmen, J.L.: A biologically motivated and analytically soluble model of collective oscillations in the cortex: I. Theory of weak locking. Biol. Cybern. 68 (1993) 363–374
Gerstner, W., Ritz, R., van Hemmen, J.L.: Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol. Cybern. 69 (1993) 503–515
Goles, E., Olivos, J.: Comportement périodique des fonctions à seuil binaires et applications. Discr. Appl. Math. 3 (1981) 93–105
Goles, E., Vichniac, Y.: Lyapunov functions for parallel neural networks. In J.S. Denker, Editor, Neural networks for computing, pp. 165–181. American Institute of Physics, New York, 1986.
Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338 (1989) 334–337
Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86 (1989) 1698–1702
Hebb, D.O.: The organization of behavior. Wiley, New York, 1949
van Hemmen, J.L.: Hebbian learning and unlearning. In Neural networks and spin glasses, pp. 91–114. World Scientific, Singapore, 1990.
van Hemmen, J.L., Gerstner, W., Herz, A.V.M., Kühn, R., Sulzer, B., Vaas, M.: Encoding and decoding of patterns which are correlated in space and time. In G. Dorffner, Editor, Konnektionismus in Artificial Intelligence und Kognitions-forschung, pp. 153–162. Springer, Berlin, Heidelberg, New York, 1990.
van Hemmen, J.L, Gerstner, W., Ritz, R.: A ‘microscopic’ model of collective oscillations in the cortx. In J.G. Taylor et al., Editors, Perspectives in neural computing, pp. 250–257. Springer, Berlin, Heidelberg, New York, 1992.
van Hemmen, J.L., Grensing, D., Huber, A., Kühn, R.: Elementary solution of classical spin glass models. Z. Phys. B 65 (1986) 53–63
van Hemmen, J.L., Grensing, D., Huber, A., Kühn, R.: Nonlinear neural networks I and II. J. Stat. Phys. 50 (1988) 231–257 and 259–293
van Hemmen, J.L., Ioffe, L.B., Kühn, R., Vaas, M.: Increasing the efficiency of a neural network through unlearning. Physica A 163 (1990) 386–392
van Hemmen, J.L., Kühn, R.: Nonlinear neural networks. Phys. Rev. Lett. 57 (1986) 913–916
van Hemmen, J.L., Kühn, R.: Collective phenomena in neural networks. In E. Domany, J.L. van Hemmen, and K.Schulten, Editors, Models of neural networks. Springer, Berlin, Heidelberg, New York, 1991.
Herz, A.V.M., Li, Z., van Hemmen J.L.: Statistical mechanics of temporal association in neural networks with transmission delays. Phys. Rev. Lett. 66 (1991) 1370–1373
Herz, A.V.M., Sulzer, B., Kühn, R., van Hemmen, J.L.: The Hebb rule: Representation of static and dynamic objects in neural nets. Europhys. Lett. 7 (1988) 663–669
Herz, A.V.M., Sulzer, B., Kühn, R., van Hemmen, J.L.: Hebbian learning reconsidered: Representation of static and dynamic objects in associative neural nets. Biol. Cybern. 60 (1989) 457–467
Hodgkin, A.L., Huxley, A.F.: A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. J. Physiol. (London) 117 (1952) 500–544
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79 (1982) 2554–2558
Lamperti, J.: Probability. Benjamin, New York, 1966. Sects. 7 and 15.
Little, W.A., Shaw, G.L.: Analytical study of the memory storage capacity of a neural network. Math. Biosc. 39 (1974) 281–290
Pfeiffer, R.R., Kiang, Y.S.: Spike discharge patterns of spontaneous and continously stimulated activity in the cochlea nucleus. Biophys. J. 5 (1965) 301–316
Riedel, U., Kühn, R., van Hemmen, J.L.: Temporal sequences and chaos in neural nets. Phys. Rev. A 38 (1988) 1105–1108
Ritz, R., Gerstner, W., van Hemmen, J.L.: A biologically motivated and analytically soluble model of collective oscillations in the cortex: II. Application to binding and pattern segmentation. Biol. Cybern. (1994) submitted.
Ritz, R., Gerstner, W., van Hemmen, J.L.: Associative binding and segregation in a network of spiking neurons. In E. Domany, J.L. van Hemmen, and K. Schulten, Editors, Models of neural networks II. Springer, New York, 1994. Chap. 5.
Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York, 1974. p. 63.
Sperling, G.: The information available in brief visual presentations. Psychol. Monogr. 74(11 Whole No. 498) (1960) 1–29
Stuart, G.J., Sakmann, B.: Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367 (1994) 69–72
Sutherland, S.: Only four possible solutions. Nature 353 (1991) 389–390
Sutton, J.P., Beis, J.S., Trainor, L.E.H.: Hierarchical model of memory and memory loss. J. Phys. A 21 (1988) 4443–4454
Trefz, T.: Oszillationen im Cortex. Diplomarbeit, Technische Universität München, 1991.
von der Malsburg, C.: The correlation theory of brain function. Internal Report 81-2, MPI für Biophysikalische Chemie, Göttingen, 1981; reprinted in E. Domany, J.L. van Hemmen, and K. Schulten, Editors, Models of neural networks II. Springer, New York, 1994. Chap. 2.
Wimbauer, S., Klemmer, N., van Hemmen, J.L.: Universality of unlearning. Neural Networks 7 (1994) in press
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van Hemmen, J.L., Ritz, R. (1995). Neural coding: A theoretical vista of mechanisms, techniques, and applications. In: Andersson, S.I. (eds) Analysis of Dynamical and Cognitive Systems. Lecture Notes in Computer Science, vol 888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58843-4_15
Download citation
DOI: https://doi.org/10.1007/3-540-58843-4_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-58843-6
Online ISBN: 978-3-540-49113-2
eBook Packages: Springer Book Archive