[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Reduction in Pei

  • Conference paper
  • First Online:
Parallel Processing: CONPAR 94 — VAPP VI (VAPP 1994, CONPAR 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 854))

  • 129 Accesses

Abstract

Reduction is one of the major issues in data parallel languages: it can be defined as a rule of program refinement. This article presents a theoretical framework, called Pei, the foundation of a formalism for parallel programming, where this rule can easily be expressed and applied. This formalism is founded on a small but powerful set of primitives: they are three operations on data fields and inverse operations. They induce a clear refinement calculus to transform specifications in executable programs by ensuring a safe process of design or optimization. We show how this approach allows to generalize the classical notion of reduction, by introducing a geometrical reduction and a functional one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.-P. Banâtre and D. Le Métayer. The Gamma model and its discipline of programming. Science of Computer Programming, 15(1):55–79, 1990.

    Google Scholar 

  2. M. Chen, Y. Choo, and J. Li. Parallel Functional Languages and Compilers. Frontier Series. ACM Press, 1991. Chapter 7.

    Google Scholar 

  3. K.M. Chandy and J. Misra. Parallel Program Design: A foundation. Addison Wesley, 1988.

    Google Scholar 

  4. C. Creveuil. Techniques d'analyse et de mise en oeuvre des programmes Gamma. PhD thesis, U. Rennes, 1991.

    Google Scholar 

  5. D. Gelernter. Generative communication in Linda. ACM Transactions on Programming Languages and Systems, 7(1):80–112, January 1985.

    Google Scholar 

  6. H. Leverge. Reduction operators in Alpha. Technical report, IRISA, November 1991.

    Google Scholar 

  7. Distribution INRIA — Rocquencourt. Maple Reference Manual, 4th Edition, March 1989.

    Google Scholar 

  8. C. Mauras. Alpha: un langage équationnel pour la conception et la programmation d'architectures parallèles synchrones. PhD thesis, U. Rennes, 1989.

    Google Scholar 

  9. C. Morgan. Programming from specifications. C.A.R. Hoare. Prentice Hall Ed., Endlewood Cliffs, N.J., 1990.

    Google Scholar 

  10. S. Rajopadhye. Lacs: A language for affine communication structures. Technical report, IRISA Rennes, 1993.

    Google Scholar 

  11. E. Violard. A mathematical theory and its environment for parallel programming. to appear in PPL, 1994.

    Google Scholar 

  12. E. Violard and G.-R. Perrin. Pei: a language and its refinement calculus for parallel programming. Parallel Computing, 18:1167–1184, 1992.

    Google Scholar 

  13. E. Violard and G.-R. Perrin. Pei: a single unifying model to design parallel programs. PARLE, LNCS, 694:500–516, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bruno Buchberger Jens Volkert

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Violard, E., Perrin, G.R. (1994). Reduction in Pei . In: Buchberger, B., Volkert, J. (eds) Parallel Processing: CONPAR 94 — VAPP VI. VAPP CONPAR 1994 1994. Lecture Notes in Computer Science, vol 854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58430-7_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-58430-7_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58430-8

  • Online ISBN: 978-3-540-48789-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics