[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recovering translational motion parameters from image sequences using Randomized Hough Transform

  • Motion
  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 719))

Included in the following conference series:

  • 148 Accesses

Abstract

An algorithm for recovering of the direction of the translational motion from consecutive pairs of perspective images is proposed. The algorithm is based on the ideas of Randomized Hough Transform i.e. the principles of random sampling and accumulation of motion parameters. The translational motion parameters are solved with least-square approach from equation which relate 2-D motion field in image plane and 3-D structure and motion together. Some experiments based on simulated and real data are presented and they show that a robust interpretation of the translational motion can be obtained even in the presence of significant level of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adiv, G., (1985), Determining Three-Dimensional Motion and Structure from Optical How Generated by Several Moving Objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume PAMI-7, Number 4, 384–401.

    Google Scholar 

  2. Aggarwal, J. K., Nandhakumar, N., (1988), On the Computations of Motion from Sequence of Images: A Review, Proceedings of the IEEE, Volume 76, Number 8, 917–935.

    Google Scholar 

  3. Anandan, P., (1989), A Computational Framework and an Algorithm for the Measurement of Visual Motion, Int. Journal of Computer Vision, Volume 2, 283–310.

    Google Scholar 

  4. Horn, B. K. P., Schunck, B. G., (1981), Determining Optical Flow, Artificial Intelligence, Volume 17, 185–203.

    Google Scholar 

  5. Horn, B. K. P., Weldon, E. J., (1987), Computationally Efficient Methods for Recovering Translational Motion, In proc. First International Conference on Computer Vision, June 8–11, London, England, 2–11.

    Google Scholar 

  6. Kultanen, P., Xu, L., Oja, E., (1990), Randomized Hough Tranform (RHT), In proc. 10th International Conference on Pattern Recognition, Atlantic City, USA, June, 631–635.

    Google Scholar 

  7. Kälviäinen, H., Oja, E., Xu, L., (1992) Randomized Hough Transform Applied to Translational and Rotational Motion Analysis, In proc. 11th IAPR International Conference on Pattern Recognition, 672–675.

    Google Scholar 

  8. Lawton, D. T., (1983), Processing Translational Motion Sequences, Computer Vision, Graphics, and Image Processing, Volume 22, 116–144.

    Google Scholar 

  9. Li, L., Duncan, J. H., (1989), Recovering 3-D Translational Motion and Establishing Stereo Correspondence from Binocular Image Flows, In proc. Workshop of Visual Motion, March 20–22, Irvine, California, USA, 329–336.

    Google Scholar 

  10. Longuet-Higgins, H. C., Prazdny, K., (1980), The Interpretation of a Moving Retinal Image, Proc. R. Soc. Lond., B 208, 385–397.

    Google Scholar 

  11. Manhatha, R., Dutta, R., Riseman, E. M., Snyder, M. A., (1989), Issues in Extracting Motion Parameters and Depth from Approximate Translational Motion, In proc. Workshop of Visual Motion, March 20–22, Irvine, California, USA, 264–272.

    Google Scholar 

  12. Mutch, K. M., (1986), Determining Object Translation Information Using Stereoscopic Motion, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume PAMI-8, Number 6, 750–755.

    Google Scholar 

  13. Nagel, H. H., Enkelmann, W., (1986), An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume PAMI-8, Number 5, 565–593.

    Google Scholar 

  14. Rangarajan, K., Shah, M., (1991), Establishing Motion Correspondence, CVGIP: Image Understanding, Volume 54, Number 1, 56–73.

    Google Scholar 

  15. Ullman, S., (1979), The Interpretation of Visual Motion, MIT Press, Cambridge, MA.

    Google Scholar 

  16. Xu, L., Oja, E., Kultanen, P., (1990), A New Curve Detection Method: Randomized Hough Transform (RHT), Pattern Recognition Letters, Volume 11, Number 5, 331–338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dmitry Chetverikov Walter G. Kropatsch

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heikkonen, J. (1993). Recovering translational motion parameters from image sequences using Randomized Hough Transform. In: Chetverikov, D., Kropatsch, W.G. (eds) Computer Analysis of Images and Patterns. CAIP 1993. Lecture Notes in Computer Science, vol 719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57233-3_52

Download citation

  • DOI: https://doi.org/10.1007/3-540-57233-3_52

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57233-6

  • Online ISBN: 978-3-540-47980-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics