Abstract
The computation of the optical flow field from an image sequences requires the definition of constraints on the temporal change of image features. In general, these constraints limit the motion of the body in space and/or of the features on the image plane.
In this paper the implications in the use of multiple constraints in the computational schema are considered. It is shown that differential constraints correspond to an implicit feature tracking. Consequently, the results strictly depend upon the local gray level structure. The best results (either in terms of measurement accuracy and speed in the computation) are obtained by selecting and applying the constraints which are best “tuned” to the particular image feature under consideration.
Several experiments are presented both from a synthetic scene and from real image sequences.
Chapter PDF
Similar content being viewed by others
References
H. H. Nagel. Direct estimation of optical flow and of its derivatives. In G. A. Orban and H. H. Nagel, editors, Artificial and Biological Vision Systems, pages 193–224. Springer Verlag, 1992.
S. Uras, F. Girosi, A. Verri, and V. Torre. A computational approach to motion perception. Biological Cybernetics, 60:79–87, 1988.
A. Verri and T. Poggio. Motion field and optical flow: qualitative properties. IEEE Trans. on PAMI, PAMI-11:490–498, 1989.
H. H. Nagel and W. Enkelmann. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transaction on PAMI, PAMI-8 1:565–593, 1986.
H. H. Nagel. On the estimation of optical flow: Relations between differenet approaches and some new results. Artificial Intelligence, 33:299–324, 1987.
J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani. Hierarchical modelbased motion estimation. In Proc. of second European Conference on Computer Vision, pages 237–252, S. Margherita Ligure, Italy, May 19–22, 1992. Springer Verlag.
A. Verri, F. Girosi, and V. Torre. Differential techniques for optical flow. Journal of the Optical Society of America A, 7:912–922, 1990.
M. Tistarelli and G. Sandini. Estimation of depth from motion using an anthropomorphic visual sensor. Image and Vision Computing, 8, No. 4:271–278, 1990.
M. Tistarelli and G. Sandini. Dynamic aspects in active vision. CVGIP: Image Understanding, 56:108–129, July 1992.
B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence, 17 No.1–3:185–204, 1981.
J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance of optical flow techniques. Int. J. of Computer Vision, also Tech. Rep. RPL-TR-9107, 1993.
D. J. Fleet and A. D. Jepson. Computation of component image velocity from local phase information. Int. J. of Computer Vision, 5:77–104, 1990.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tistarelli, M. (1994). Multiple constraints for optical flow. In: Eklundh, JO. (eds) Computer Vision — ECCV '94. ECCV 1994. Lecture Notes in Computer Science, vol 800. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57956-7_6
Download citation
DOI: https://doi.org/10.1007/3-540-57956-7_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57956-4
Online ISBN: 978-3-540-48398-4
eBook Packages: Springer Book Archive