Abstract
This paper presents algorithms for the identification and resolution of rational and non-rational singularities (by means of blowings-up) of a projective plane curve C: F(x 1, x 2, x 3)=0 with coefficients in a finite field k. As a result, the genus of the curve is computed. In addition the running time of the algorithms are also analyzed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. Abhyankar and C. Bajaj. Computations with algebraic curves. Lecture Notes in Computer Science, Springer-Verlag, 358, July 1988.
M. Bronstein, M. Hassner, A. Vasquez, and C.J. Williamson. Computer algebra algorithms for the construction of error correcting codes on algebraic curves. IEEE Proceedings on Information Theory, June 1991.
D. Le Brigand and J.J. Risler. Algorithm de Brill-Noether et codes de Goppa. Bull. Soc. math. France, 116:231–253, 1988.
D. Polemi. The Brill-Noether Theorem for Finite Fields and an Algorithm for Finding Algebraic Geometric Goppa Codes. Proceedings of the IEEE International Symposium on Information Theory, p.38, Budapest, Hungary, 1991.
D. Polemi, C. Moreno, and O. Moreno. A construction of a.g. Goppa codes from singular curves. submitted for publication, 1992.
T. Sakkalis. The topological configuration of a real algebraic curve. Bull. Austr. Math. Soc., 43:37–50, 1991.
T. Sakkalis and R. Farouki. Singular points of algebraic curves. Journal of Symbolic Computation, 9:405–421, 1990.
S. Vladut and Y. Manin. Linear codes and modular curves. Journal of Soviet Mathematics, 30, no. 6:2611–2643, 1985.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Polemi, D., Sakkalis, T. (1994). Singular algebraic curves over finite fields. In: Gulliver, T.A., Secord, N.P. (eds) Information Theory and Applications. ITA 1993. Lecture Notes in Computer Science, vol 793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57936-2_28
Download citation
DOI: https://doi.org/10.1007/3-540-57936-2_28
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57936-6
Online ISBN: 978-3-540-48392-2
eBook Packages: Springer Book Archive