[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Voronoi diagrams in the L p -metric in higher dimensions

  • Conference paper
  • First Online:
STACS 94 (STACS 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 775))

Included in the following conference series:

  • 158 Accesses

Abstract

We prove upper bounds on the number of L p -spheres passing through D+1 points in general position in D-space, and on the sum of the Betti numbers of the intersection of bisectors in the L p -metric, where p is an even positive integer. The bounds found, surprisingly, do not depend on p. The proofs for these bounds involve the techniques of Milnor [14] and Thorn [20] for finding bounds on the sum of the Betti numbers of algebraic varieties, but instead of the usual degree of polynomials we use their additive complexity, and apply results of Benedetti and Risler [2, 16]. Furthermore, using the theory of degree of mappings in D-space we prove that for even p the number of L p -spheres passing through D+1 points in general position is odd. Combined with results in [10, 11], our results clarify the structure of Voronoi diagrams based on the L p -metric (with even p) in 3-space.

This work was partially supported by Deutsche Forschungsgemeinschaft, grant Kl 655/2-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Aurenhammer: Voronoi Diagrams — A Survey of a Fundamental Data Structure. ACM Computer Surveys 23(3), 1991.

    Google Scholar 

  2. R. Benedetti and J.-J. Risler: Real algebraic and semi-algebraic sets. Actualités mathématiques, Hermann, Paris 1990.

    Google Scholar 

  3. A. Borodin and S. Cook: On the number of additions to compute specific polynomials. SIAM J. Comput. 5(1976), pp. 146–157.

    Google Scholar 

  4. L. P. Chew and R. L. Drysdale: Voronoi diagrams based on convex distance functions. Proc. ACM Symposium on Comp. Geom., pp. 235–244, 1985.

    Google Scholar 

  5. R. Drysdale and B. Schaudt: Higher Dimensional Delaunay Diagrams for Convex Distance Functions. Proc. 4th Canad. Conf. on Comp. Geom., pp. 274–279, 1992.

    Google Scholar 

  6. H. Edelsbrunner: Algorithms in Combinatorial Geometry. Springer-Verlag, New York 1987.

    Google Scholar 

  7. P. E. Ehrlich and H.-C. Im Hof: Dirichlet regions in manifolds without conjugate points. Comment. Math. Helvetici 54 (1979), pp. 642–658.

    Google Scholar 

  8. M. Golubitsky and V. Guillemin: Stable Mappings and Their Singularities. Springer-Verlag, New-York 1973.

    Google Scholar 

  9. M. J. Greenberg: Lectures on algebraic topology. Benjamin, 1967.

    Google Scholar 

  10. C. Icking, R. Klein, N.-M. LÊ, L. Ma: Convex Distance Functions in 3-Space are Different. Proc. 9th ACM Symposium on Comp. Geom., pp. 116–123, 1993.

    Google Scholar 

  11. N.-M. LÊ: On general properties of smooth strictly convex distance functions in RD. Proc. 5th Canadian Conf. on Comp. Geom., pp. 375–380, 1993.

    Google Scholar 

  12. D. T. Lee: Two-dimensional Voronoi diagrams in the L p -metric. J. ACM 27(4) (1980), pp. 604–618.

    Google Scholar 

  13. V. V. Makeev: The degree of a mapping in some problems in combinatorial geometry. J. of Soviet Mathematics 51(5), Plenum Publ. Corp., Oct. 1990.

    Google Scholar 

  14. J. Milnor: On the Betti numbers of real varieties. Proc. Amer. Math. Soc. 15 (1964), pp. 275–280.

    Google Scholar 

  15. J. L. Montaña, L. M. Pardo, T. Recio: The Non-Scalar Model of Complexity in Computational Geometry. Effective Methods in Algebraic Geometry, edited by T. Mora and C. Traverso, Birkhäuser, Boston 1991.

    Google Scholar 

  16. J. J. Risler: Additive complexity and zeros of real polynomials. SIAM J. Comput. 14(1985), pp. 178–183.

    Google Scholar 

  17. J. T. Schwartz: Nonlinear Functional Analysis. Gordon and Breach Science Publishers, New York 1969.

    Google Scholar 

  18. M. Sharir: Arrangements of surfaces in higher dimensions: envelopes, single cells, and other recent developments. Proc. 5th Canadian Conf. on Comp. Geom., pp. 181–186, 1993.

    Google Scholar 

  19. M. Sharir: Almost tight upper bounds for lower envelopes in higher dimensions. Manuscript, 1993.

    Google Scholar 

  20. R. Thom: Sur L'Homologie des Variétés Algébriques Réelles. Differential and Combinatorial Topology, edited by S. S. Cairns, Princeton University Press, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patrice Enjalbert Ernst W. Mayr Klaus W. Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lê, NM. (1994). On Voronoi diagrams in the L p -metric in higher dimensions. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds) STACS 94. STACS 1994. Lecture Notes in Computer Science, vol 775. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57785-8_184

Download citation

  • DOI: https://doi.org/10.1007/3-540-57785-8_184

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57785-0

  • Online ISBN: 978-3-540-48332-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics