Abstract
We prove upper bounds on the number of L p -spheres passing through D+1 points in general position in D-space, and on the sum of the Betti numbers of the intersection of bisectors in the L p -metric, where p is an even positive integer. The bounds found, surprisingly, do not depend on p. The proofs for these bounds involve the techniques of Milnor [14] and Thorn [20] for finding bounds on the sum of the Betti numbers of algebraic varieties, but instead of the usual degree of polynomials we use their additive complexity, and apply results of Benedetti and Risler [2, 16]. Furthermore, using the theory of degree of mappings in D-space we prove that for even p the number of L p -spheres passing through D+1 points in general position is odd. Combined with results in [10, 11], our results clarify the structure of Voronoi diagrams based on the L p -metric (with even p) in 3-space.
This work was partially supported by Deutsche Forschungsgemeinschaft, grant Kl 655/2-1.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
F. Aurenhammer: Voronoi Diagrams — A Survey of a Fundamental Data Structure. ACM Computer Surveys 23(3), 1991.
R. Benedetti and J.-J. Risler: Real algebraic and semi-algebraic sets. Actualités mathématiques, Hermann, Paris 1990.
A. Borodin and S. Cook: On the number of additions to compute specific polynomials. SIAM J. Comput. 5(1976), pp. 146–157.
L. P. Chew and R. L. Drysdale: Voronoi diagrams based on convex distance functions. Proc. ACM Symposium on Comp. Geom., pp. 235–244, 1985.
R. Drysdale and B. Schaudt: Higher Dimensional Delaunay Diagrams for Convex Distance Functions. Proc. 4th Canad. Conf. on Comp. Geom., pp. 274–279, 1992.
H. Edelsbrunner: Algorithms in Combinatorial Geometry. Springer-Verlag, New York 1987.
P. E. Ehrlich and H.-C. Im Hof: Dirichlet regions in manifolds without conjugate points. Comment. Math. Helvetici 54 (1979), pp. 642–658.
M. Golubitsky and V. Guillemin: Stable Mappings and Their Singularities. Springer-Verlag, New-York 1973.
M. J. Greenberg: Lectures on algebraic topology. Benjamin, 1967.
C. Icking, R. Klein, N.-M. LÊ, L. Ma: Convex Distance Functions in 3-Space are Different. Proc. 9th ACM Symposium on Comp. Geom., pp. 116–123, 1993.
N.-M. LÊ: On general properties of smooth strictly convex distance functions in RD. Proc. 5th Canadian Conf. on Comp. Geom., pp. 375–380, 1993.
D. T. Lee: Two-dimensional Voronoi diagrams in the L p -metric. J. ACM 27(4) (1980), pp. 604–618.
V. V. Makeev: The degree of a mapping in some problems in combinatorial geometry. J. of Soviet Mathematics 51(5), Plenum Publ. Corp., Oct. 1990.
J. Milnor: On the Betti numbers of real varieties. Proc. Amer. Math. Soc. 15 (1964), pp. 275–280.
J. L. Montaña, L. M. Pardo, T. Recio: The Non-Scalar Model of Complexity in Computational Geometry. Effective Methods in Algebraic Geometry, edited by T. Mora and C. Traverso, Birkhäuser, Boston 1991.
J. J. Risler: Additive complexity and zeros of real polynomials. SIAM J. Comput. 14(1985), pp. 178–183.
J. T. Schwartz: Nonlinear Functional Analysis. Gordon and Breach Science Publishers, New York 1969.
M. Sharir: Arrangements of surfaces in higher dimensions: envelopes, single cells, and other recent developments. Proc. 5th Canadian Conf. on Comp. Geom., pp. 181–186, 1993.
M. Sharir: Almost tight upper bounds for lower envelopes in higher dimensions. Manuscript, 1993.
R. Thom: Sur L'Homologie des Variétés Algébriques Réelles. Differential and Combinatorial Topology, edited by S. S. Cairns, Princeton University Press, 1965.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lê, NM. (1994). On Voronoi diagrams in the L p -metric in higher dimensions. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds) STACS 94. STACS 1994. Lecture Notes in Computer Science, vol 775. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57785-8_184
Download citation
DOI: https://doi.org/10.1007/3-540-57785-8_184
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57785-0
Online ISBN: 978-3-540-48332-8
eBook Packages: Springer Book Archive