Abstract
The k-edge-connectivity augmentation problem (k-ECA) is the subject of the paper. Four approximation algorithms FSA, FSM, SMC and HBD for k-ECA are proposed, and both theoretical and experimental evaluation are given.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
P.M.Camerini, L.Fratta and F.Maffioli, A note on finding optimum branchings, Networks, 9, 309–312 (1979).
Y-J Chu and T-H Liu, On the shortest arborescence of a directed graph, SCIENTIASINICA, 14, 1396–1400 (1965).
K.P.Eswaran and R.E.Tarjan, Augmentation problems, SIAM J.Comput, 5, 653–655 (1976).
S.Even, Graph Algorithms, Pitman, London (1979).
A.Frank, Augmenting graphs to meet edge connectivity requirements, Proc. 31st Annual IEEE Symposium on Foundations of Computer Science, 708–718 (1990).
G.N.Fredericson and J.Ja′ja′, Approximation algorithms for several graph augmentation problems, SIAM J.Comput., 10, 270–283 (1981).
H.N.Gabow, Applications of a poset representation to edge connectivity and graph rigidity, Proc. 32nd IEEE Symp. Found. Comp. Sci., 812–821 (1991).
H.N.Gabow, Z.Galil, T.Spencer and R.E.Tarjan, Efficient algorithms for finding minimum spanning trees in undirected and directed graphs, Combinatorica, 6(2), 109–122 (1986).
Z.Galil and G.F.Italiano, Reducing edge connectivity to vertex connectivity, SIGACT NEWS, 22, 57–61 (1991).
M.R.Garey and D.S.Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness, Freeman, San Francisco (1978).
J.E.Hopcroft and R.E.Tarjan, Dividing a graph into triconnected components, SIAM J. Comput., 2, 135–158 (1973).
A.V.Karzanov and E.A.Timofeev, Efficient algorithm for finding all minimal edge cuts of a nonoriented graph, Cybernetics, 156–162, Translated from Kibernetika, No.2, pp.8–12 (March–April, 1986).
T.Mashima, S.Taoka and T.Watanabe, Approximation Algorithms for the k-Edge-Connectivity Augmentation Problem, IEICE of Japan, Tech. Reserch Rep., COMP92-24, 11–20 (1992).
H.Nagamochi and T.Ibaraki, A linear time algorithm for computing 3-edge-connected components of a multigraph, Tech. Rep. #91005, Dept. of Applied Mathematics and Physics, Faculty of Engineering, Kyoto Univ., Kyoto Japan, 606 (1991).
D.Naor, D.Gusfield and C.Martel, A fast algorithm for optimally increasing the edge-connectivity, Proc. 31st Annual IEEE Symposium on Foundations of Computer Science, 698–707 (1990).
S.Taoka, T.Watanabe and K.Onaga, A linear time algorithm for computing all 3-edge-connected components of an multigraph, Trans. IEICE, E75-3, 410–424 (1991).
R.E.Tarjan, Finding optimum branchings, Networks, 7, 25–35 (1977).
R.E.Tarjan, Data Structures and Network Algorithms, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA (1983).
S.Ueno, Y.Kajitani, and H.Wada, The minimum augmentation of trees to k-edge-connected graphs, Networks, 18, 19–25 (1988).
T.Watanabe and A.Nakamura, Edge-connectivity augmentation problems, Journal of Computer and System Sciences, 35, 96–144 (1987).
T.Watanabe, T.Narita and A.Nakamura, 3-Edge-connectivity augmentation problems, Proc. 1989 IEEE ISCAS, 335–338 (1989).
T.Watanabe, M.Yamakado and K.Onaga, A linear-time augmenting algorithm for 3-edge-connectivity augmentation problems, Proc. 1991 IEEE ISCAS, 1168–1171 (1991).
T.Watanabe, S.Taoka and T.Mashima, Approximation algorithms for the 3-edge-connectivity augmentation problem of graphs, IEEE Asia-Pacific Conference on Circuits and Systems 1992, to appear.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Watanabe, T., Mashima, T., Taoka, S. (1992). The k-edge-connectivity augmentation problem of weighted graphs. In: Ibaraki, T., Inagaki, Y., Iwama, K., Nishizeki, T., Yamashita, M. (eds) Algorithms and Computation. ISAAC 1992. Lecture Notes in Computer Science, vol 650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56279-6_55
Download citation
DOI: https://doi.org/10.1007/3-540-56279-6_55
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-56279-5
Online ISBN: 978-3-540-47501-9
eBook Packages: Springer Book Archive