[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The k-edge-connectivity augmentation problem of weighted graphs

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 650))

Included in the following conference series:

Abstract

The k-edge-connectivity augmentation problem (k-ECA) is the subject of the paper. Four approximation algorithms FSA, FSM, SMC and HBD for k-ECA are proposed, and both theoretical and experimental evaluation are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P.M.Camerini, L.Fratta and F.Maffioli, A note on finding optimum branchings, Networks, 9, 309–312 (1979).

    Google Scholar 

  2. Y-J Chu and T-H Liu, On the shortest arborescence of a directed graph, SCIENTIASINICA, 14, 1396–1400 (1965).

    Google Scholar 

  3. K.P.Eswaran and R.E.Tarjan, Augmentation problems, SIAM J.Comput, 5, 653–655 (1976).

    Article  Google Scholar 

  4. S.Even, Graph Algorithms, Pitman, London (1979).

    Google Scholar 

  5. A.Frank, Augmenting graphs to meet edge connectivity requirements, Proc. 31st Annual IEEE Symposium on Foundations of Computer Science, 708–718 (1990).

    Google Scholar 

  6. G.N.Fredericson and J.Ja′ja′, Approximation algorithms for several graph augmentation problems, SIAM J.Comput., 10, 270–283 (1981).

    Article  Google Scholar 

  7. H.N.Gabow, Applications of a poset representation to edge connectivity and graph rigidity, Proc. 32nd IEEE Symp. Found. Comp. Sci., 812–821 (1991).

    Google Scholar 

  8. H.N.Gabow, Z.Galil, T.Spencer and R.E.Tarjan, Efficient algorithms for finding minimum spanning trees in undirected and directed graphs, Combinatorica, 6(2), 109–122 (1986).

    Google Scholar 

  9. Z.Galil and G.F.Italiano, Reducing edge connectivity to vertex connectivity, SIGACT NEWS, 22, 57–61 (1991).

    Article  Google Scholar 

  10. M.R.Garey and D.S.Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness, Freeman, San Francisco (1978).

    Google Scholar 

  11. J.E.Hopcroft and R.E.Tarjan, Dividing a graph into triconnected components, SIAM J. Comput., 2, 135–158 (1973).

    Article  Google Scholar 

  12. A.V.Karzanov and E.A.Timofeev, Efficient algorithm for finding all minimal edge cuts of a nonoriented graph, Cybernetics, 156–162, Translated from Kibernetika, No.2, pp.8–12 (March–April, 1986).

    Google Scholar 

  13. T.Mashima, S.Taoka and T.Watanabe, Approximation Algorithms for the k-Edge-Connectivity Augmentation Problem, IEICE of Japan, Tech. Reserch Rep., COMP92-24, 11–20 (1992).

    Google Scholar 

  14. H.Nagamochi and T.Ibaraki, A linear time algorithm for computing 3-edge-connected components of a multigraph, Tech. Rep. #91005, Dept. of Applied Mathematics and Physics, Faculty of Engineering, Kyoto Univ., Kyoto Japan, 606 (1991).

    Google Scholar 

  15. D.Naor, D.Gusfield and C.Martel, A fast algorithm for optimally increasing the edge-connectivity, Proc. 31st Annual IEEE Symposium on Foundations of Computer Science, 698–707 (1990).

    Google Scholar 

  16. S.Taoka, T.Watanabe and K.Onaga, A linear time algorithm for computing all 3-edge-connected components of an multigraph, Trans. IEICE, E75-3, 410–424 (1991).

    Google Scholar 

  17. R.E.Tarjan, Finding optimum branchings, Networks, 7, 25–35 (1977).

    Google Scholar 

  18. R.E.Tarjan, Data Structures and Network Algorithms, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA (1983).

    Google Scholar 

  19. S.Ueno, Y.Kajitani, and H.Wada, The minimum augmentation of trees to k-edge-connected graphs, Networks, 18, 19–25 (1988).

    Google Scholar 

  20. T.Watanabe and A.Nakamura, Edge-connectivity augmentation problems, Journal of Computer and System Sciences, 35, 96–144 (1987).

    Google Scholar 

  21. T.Watanabe, T.Narita and A.Nakamura, 3-Edge-connectivity augmentation problems, Proc. 1989 IEEE ISCAS, 335–338 (1989).

    Google Scholar 

  22. T.Watanabe, M.Yamakado and K.Onaga, A linear-time augmenting algorithm for 3-edge-connectivity augmentation problems, Proc. 1991 IEEE ISCAS, 1168–1171 (1991).

    Google Scholar 

  23. T.Watanabe, S.Taoka and T.Mashima, Approximation algorithms for the 3-edge-connectivity augmentation problem of graphs, IEEE Asia-Pacific Conference on Circuits and Systems 1992, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Toshihide Ibaraki Yasuyoshi Inagaki Kazuo Iwama Takao Nishizeki Masafumi Yamashita

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Watanabe, T., Mashima, T., Taoka, S. (1992). The k-edge-connectivity augmentation problem of weighted graphs. In: Ibaraki, T., Inagaki, Y., Iwama, K., Nishizeki, T., Yamashita, M. (eds) Algorithms and Computation. ISAAC 1992. Lecture Notes in Computer Science, vol 650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56279-6_55

Download citation

  • DOI: https://doi.org/10.1007/3-540-56279-6_55

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56279-5

  • Online ISBN: 978-3-540-47501-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics