[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Self-organizing feature maps for image segmentation

  • Conference paper
  • First Online:
New Trends in Neural Computation (IWANN 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 686))

Included in the following conference series:

Abstract

A connectionist method for segmenting digital images in grey level is defined. This method relies on the topology preserving property of Kohonen's self-organizing feature maps. This method is adaptive in the sense that the most present on the image an interval of grey values is, the most accurate the segmentation in this range is. Segmentation of various pictures illustrates the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Kohonen, “Self-organization and associative memory”, Springer-Verlag Berlin, 1984.

    Google Scholar 

  2. T. Kohonen, “The self-organizing feature map”, proceedings of the I.E.E.E., vol. 78, n∘ 9, September 1990.

    Google Scholar 

  3. N.M. Nasrabadi, Y. Feng, “Vector quantization of images based upon the Kohonen self-organizing feature map”, I.E.E.E. Int. Conf. on Neural Networks, pp. 101–108, San Diego California, 1988.

    Google Scholar 

  4. E. le Bail, A. Mitchie, “Quantification vectorielle par le réseau neuronal de Kohonen”, Traitement du Signal, vol. 6, n∘ 6, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Joan Cabestany Alberto Prieto

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Natowicz, R., Sokol, R. (1993). Self-organizing feature maps for image segmentation. In: Mira, J., Cabestany, J., Prieto, A. (eds) New Trends in Neural Computation. IWANN 1993. Lecture Notes in Computer Science, vol 686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56798-4_212

Download citation

  • DOI: https://doi.org/10.1007/3-540-56798-4_212

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56798-1

  • Online ISBN: 978-3-540-47741-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics