[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Kolmogorov signal processor

  • Conference paper
  • First Online:
New Trends in Neural Computation (IWANN 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 686))

Included in the following conference series:

Abstract

A new concept of signal processing architecture, with general guide-lines for design and learning is reported.

Starting from the pioneer works reported by Kolmorogov [2] and J. Herault [4], the authors develop a signal processor that, instead of facing directly the problem of simultaneous multiple signal enhancement or multiparameter estimation, decomposes the signal processing task in single signal enhancement, or single parameter estimation, problems. The resulting framework is able to cope with complex signal processing designs with reduced complexity and in a more distributed manner.

At the same time, the reader, through the work reported herein, may realise up to what degree attractive signal processing tools, as neural networks, the estimate/maximise algorithm and high order signal processing, show up in a natural way, when the reported processor is developed, designed and non-supervised learning is considered.

This work was done under Basic Esprit ATHOS and has been supported by Ihe National Research Plan of Spain, CICYT, Grant number TIC92-0800-C05-05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Hecht-Nielsen. “Neurocomputing”. Addison Wesley, 1990, ISBN 0-201-09355-3, 1990, pp.122–124.

    Google Scholar 

  2. A.N. Kolmogorov. “On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition”, (in Russian), Dokl. Akad. Nauk USSR, 114, pp 953–956, 1957.

    Google Scholar 

  3. Jutten C. “Calcul neuromimetique et traitement du signal: Analyse en composants independents”. Ph.D. Tesis, In french, INPG-USMG, Grenoble 1987.

    Google Scholar 

  4. Common P., Jutten C., Herault J. “Blind separation of sources Part II: Problem statement”, Signal Processing, vol. 24, no. 1, pp 11–21, July 1991.

    Google Scholar 

  5. Lagunas M.A., Pagés A.,“Multitone tracking with coupled EKFs and high order learning”. Proc. ICASSP 92, pp V153–V156, San Francisco, USA.

    Google Scholar 

  6. Lagunas M.A., Pérez Neira A., “EKF schemes in array processing”, NATO-ASI Acoustics Signal Processing for Ocean Exploration, Madeira, July 16 August 7, 1992.

    Google Scholar 

  7. Lorentz G. “Approximation of functions”, pp 168–179, Chelsea Publishing Co., New York 1986.

    Google Scholar 

  8. Nájar M., Lagunas M.A., Pérez A.,“Source separation based on coupled single DOA estimation processors”, Proc. ICASSP 93, Minneapolis, April 1993.

    Google Scholar 

  9. B.D.O. Anderson and J. B. Moore, “Optimal Filtering”, Englewood Cliffs, N. J. Prentice-Halls, 1979.

    Google Scholar 

  10. Ana Pérez-Neira, M.A. Lagunas, “Array Covariance error measurement in adaptive source parameter estimation, Proc. Sixth SSAP Workshop on Statistical Signal & Array Processing. October 7–9, 1992.

    Google Scholar 

  11. Y. Chen, C.L. Nikias, J.G. Proakis, “CRIMNA: Criterion with Memory Nonlinearity for blind equalization”, HOS, Proc. Signal Processing Workshop on High Order Statistics, Chanrrouse, Francia, July, 1991, Ed. J.l. Lacoume.

    Google Scholar 

  12. M.Gaeta, J.L. Lacoume, “Source Separation versus Hypothesis”, HOS, Proc. Signal Processing Workshop on High Order Statistics, Chanrrouse, Francia, July, 1991, Ed. J.l. Lacoume.

    Google Scholar 

  13. C. Jutten, L. Nguyen Thi, E. Dijkstra, E. Vittoz, J. Caelen, “Blind Separation of Sources: an Algorithm for Separation of Convolutive Mixtures”, HOS, Proc. Signal Processing Workshop on High Order Statistics, Chanrrouse, Francia, July, 1991, Ed. J.l. Lacoume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Joan Cabestany Alberto Prieto

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lagunas, M.A., Pérez-Neira, A., Nájar, M., Pagés, A. (1993). The Kolmogorov signal processor. In: Mira, J., Cabestany, J., Prieto, A. (eds) New Trends in Neural Computation. IWANN 1993. Lecture Notes in Computer Science, vol 686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56798-4_194

Download citation

  • DOI: https://doi.org/10.1007/3-540-56798-4_194

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56798-1

  • Online ISBN: 978-3-540-47741-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics