Abstract
A new concept of signal processing architecture, with general guide-lines for design and learning is reported.
Starting from the pioneer works reported by Kolmorogov [2] and J. Herault [4], the authors develop a signal processor that, instead of facing directly the problem of simultaneous multiple signal enhancement or multiparameter estimation, decomposes the signal processing task in single signal enhancement, or single parameter estimation, problems. The resulting framework is able to cope with complex signal processing designs with reduced complexity and in a more distributed manner.
At the same time, the reader, through the work reported herein, may realise up to what degree attractive signal processing tools, as neural networks, the estimate/maximise algorithm and high order signal processing, show up in a natural way, when the reported processor is developed, designed and non-supervised learning is considered.
This work was done under Basic Esprit ATHOS and has been supported by Ihe National Research Plan of Spain, CICYT, Grant number TIC92-0800-C05-05.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Hecht-Nielsen. “Neurocomputing”. Addison Wesley, 1990, ISBN 0-201-09355-3, 1990, pp.122–124.
A.N. Kolmogorov. “On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition”, (in Russian), Dokl. Akad. Nauk USSR, 114, pp 953–956, 1957.
Jutten C. “Calcul neuromimetique et traitement du signal: Analyse en composants independents”. Ph.D. Tesis, In french, INPG-USMG, Grenoble 1987.
Common P., Jutten C., Herault J. “Blind separation of sources Part II: Problem statement”, Signal Processing, vol. 24, no. 1, pp 11–21, July 1991.
Lagunas M.A., Pagés A.,“Multitone tracking with coupled EKFs and high order learning”. Proc. ICASSP 92, pp V153–V156, San Francisco, USA.
Lagunas M.A., Pérez Neira A., “EKF schemes in array processing”, NATO-ASI Acoustics Signal Processing for Ocean Exploration, Madeira, July 16 August 7, 1992.
Lorentz G. “Approximation of functions”, pp 168–179, Chelsea Publishing Co., New York 1986.
Nájar M., Lagunas M.A., Pérez A.,“Source separation based on coupled single DOA estimation processors”, Proc. ICASSP 93, Minneapolis, April 1993.
B.D.O. Anderson and J. B. Moore, “Optimal Filtering”, Englewood Cliffs, N. J. Prentice-Halls, 1979.
Ana Pérez-Neira, M.A. Lagunas, “Array Covariance error measurement in adaptive source parameter estimation, Proc. Sixth SSAP Workshop on Statistical Signal & Array Processing. October 7–9, 1992.
Y. Chen, C.L. Nikias, J.G. Proakis, “CRIMNA: Criterion with Memory Nonlinearity for blind equalization”, HOS, Proc. Signal Processing Workshop on High Order Statistics, Chanrrouse, Francia, July, 1991, Ed. J.l. Lacoume.
M.Gaeta, J.L. Lacoume, “Source Separation versus Hypothesis”, HOS, Proc. Signal Processing Workshop on High Order Statistics, Chanrrouse, Francia, July, 1991, Ed. J.l. Lacoume.
C. Jutten, L. Nguyen Thi, E. Dijkstra, E. Vittoz, J. Caelen, “Blind Separation of Sources: an Algorithm for Separation of Convolutive Mixtures”, HOS, Proc. Signal Processing Workshop on High Order Statistics, Chanrrouse, Francia, July, 1991, Ed. J.l. Lacoume.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lagunas, M.A., Pérez-Neira, A., Nájar, M., Pagés, A. (1993). The Kolmogorov signal processor. In: Mira, J., Cabestany, J., Prieto, A. (eds) New Trends in Neural Computation. IWANN 1993. Lecture Notes in Computer Science, vol 686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56798-4_194
Download citation
DOI: https://doi.org/10.1007/3-540-56798-4_194
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-56798-1
Online ISBN: 978-3-540-47741-9
eBook Packages: Springer Book Archive