[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Practical realization of a radial basis function network for handwritten digit recognition

  • Conference paper
  • First Online:
New Trends in Neural Computation (IWANN 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 686))

Included in the following conference series:

  • 261 Accesses

Abstract

We present a practical realization of a Radial Basis Function Network for handwritten digits recognition task. Inspired from regularization theory and Parzen windows non parametric estimator, Radial Basis Function networks are tested for a classification task. Reduction of the number of hidden nodes which is an important and necessary step to obtain a computationally tractable network is made using an original technique. A comparison is made with the k-nearest neighbour and Parzen windows methods. Results appear better for the network at a much lower computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Poggio T., Girosi F., Networks for approximation and learning.Proceedings of the IEEE, Vol 78, No. 9,1990.

    Google Scholar 

  2. Girosi F., Poggio T., Networks and the best approximation property. Biological Cybernetic 63, 169–176, 1990.

    Google Scholar 

  3. Richard M. D., Lippman R. P., Neural Networks Classifiers estimate a posteriori Probabilities. Neural Computation, 4, 461–483, 1991.

    Google Scholar 

  4. Lee Y., Handwritten recognition using K Nearest-Neighbour, Radial Basis Function and Backpropagation Neural Networks. Neural Computation, 3, 440–449, 1991.

    Google Scholar 

  5. Moody J., Darken C. J., Fast learning in Networks of locally tuned processing units, Neural Computation, 1, 281–294, 1989.

    Google Scholar 

  6. Ng, Lipmann R.P., A comparative study of the practical characteristics of neural networks and conventional pattern clasifiers, in Neural Information Processing Systems 3, 1991, D.S. Touretzky, ed. Morgan Kaufmann, San Mateo, Ca.

    Google Scholar 

  7. Geman S, Bienenstock E., Boursat R., Neural Networks and the bias variance dilemma, Neural Computation, 4, 1–58, 1992.

    Google Scholar 

  8. Gluksman H. A., Classification of Mixed Font alphabetics by characteristics loci., 1st annual IEEE Computer Conference, 138–141, 1967.

    Google Scholar 

  9. Gaillat G., Berthod M., Panorama des techniques d'extraction de traits caractéristiques en lecture, optique des caractères, Revue Technique THOMSON-CSF, Vol 11, No 4, 1979.

    Google Scholar 

  10. Specht D. F., Probabilistic Neural Networks, Neural Networks, vol. 3, 109–118, 1990.

    Google Scholar 

  11. Musavi M. T., Ahmed W., Chand K. H., Faris K. B., Hummels D. M., On the Training of Radial Basis Function Classifiers, Neural Networks, Vol 5, 595–605, 1992.

    Google Scholar 

  12. Hausler D., Decision Theoretic Generalization of the PAC Model for Neural Net and Other Learning Applications, Technical Report, UCSC-CRL-91-02, 1991.

    Google Scholar 

  13. White H, Conectionist Non Parametric Regression: Multilayer feedforward Networks can learn Arbitrary Mappings, Neural Networks, Vol. 3, 535–549, 1990.

    Google Scholar 

  14. Devroye L.,Automatic Pattern Recognition: A study of the Probability of Error, IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 10, No.4, 1988.

    Google Scholar 

  15. Chiu S.T., Bandwith Selection for Kernel Density Estimation, The Annals of Statistics, vol. 19, no. 4, 1883–1905, 1991.

    Google Scholar 

  16. Somorjai R.L., Ali M.K. An efficient algorithm for estimating dimensionalities, Can. J. Chem. 66, 979, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Joan Cabestany Alberto Prieto

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lemarié, B. (1993). Practical realization of a radial basis function network for handwritten digit recognition. In: Mira, J., Cabestany, J., Prieto, A. (eds) New Trends in Neural Computation. IWANN 1993. Lecture Notes in Computer Science, vol 686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56798-4_136

Download citation

  • DOI: https://doi.org/10.1007/3-540-56798-4_136

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56798-1

  • Online ISBN: 978-3-540-47741-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics