Abstract
A biologically motivated compute intensive approach to computer vision is developed and applied to the problem of face recognition. The approach is based on the use of two-dimensional Gabor functions that fit the receptive fields of simple cells in the primary visual cortex of mammals. A descriptor set that is robust against translations is extracted by a global reduction operation and used for a search in an image database. The method was applied on a database of 205 face images of 30 persons and a recognition rate of 94% was achieved.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
N. Petkov: “Systolic simulation of multilayer, feedforward neural networks”, Proc. Int. Conf. on Parallel Processing in Neural Systems and Computers, Düsseldorf, 1990, ed. by R. Eckmiller, G. Hartmann and G. Hauske (Amsterdam: North-Holland, 1990) pp. 303–306.
N. Petkov: Systolic Parallel Processing (Amsterdam: North-Holland, Elsevier Sci. Publ., 1992).
W.W. Bledsoe: “Man-machine facial recognition”, Technical Report PRI:22, Panoramic Research Inc., (Paolo Alto, CA, 1966).
A.J. Goldstein, L.D. Harmon, and A.B. Lesk: “Identification of human faces”, In Proc. IEEE, Vol. 59 (1971) pp. 748.
T. Kanade: “Picture processing by computer complex and recognition of human faces”, Technical Report, Kyoto University, Dept. of Information Science, 1973.
Y. Kaya and K. Kobayashi: “A basic study on human face recognition”, in S. Watanabe (ed.) Frontiers of Pattern Recognition (1972) pp. 265.
D.J. Burr: “Elastic matching of line drawings”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 3 (1981) No. 6, pp. 708–713.
J. Buhmann, J. Lange, and C. von der Malsburg: “Distortion invariant object recognition by matching hierarchically labeled graphs”, Proceedings of IJCNN'89 (1989) pp. 151–159.
A.L. Yuille: “Deformable templates for face recognition”, Journal of Cognitive Neuroscience, Vol. 3 (1991) No.1, pp. 59–70.
B.S. Manjunath, R. Chellappa, and C. von der Malsburg: “A feature based approach to face recognition”, Proc. 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Champaign, Illinois, June 1992, pp. 373–378
M. Turk and A. Pentland: “Eigenfaces for recognition”, Technical Report 154, MIT Media Lab Vision and Modelling Group, 1990.
M. Turk and A. Pentland: “Face recognition using eigenfaces”, Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, Hawaii, June 1991, pp. 586–591.
Zi-Quan Hong: “Algebraic feature extraction of image for recognition” Pattern Recognition Vol. 24 (1991) No.3, pp. 211–219.
O. Nakamura, S. Mathur, and T. Minami: “Identification of human faces based on isodensity maps”, Pattern Recognition, Vol. (1991) No.3, pp.263–272.
M. Lades, J.C. Vorbrüggen, J. Buhmann, J. Lange, C. von der Malsburg, R.P. Würtz, and W. Konen: “Distortion invariant object recognition in the dynamic link architecture”, 1991 (preprint).
T. Kohonen: Self-Organization and Associative Memory, (New York: Springer Verlag, 1989).
A. Fuchs and H. Haken: “Pattern recognition and associative memory as dynamical processes in a synergetic system II”. Biological Cybernetics, Vol. 60 (1988), pp. 107–109.
G. Cottrell and M. Fleming: “Face recognition using unsupervised feature extraction”, Proceedings of the International Neural Network Conference, 1990.
V. Bruce and M. Burton: “Computer recognition of faces”, in Handbook of Research on Face Processing, A.W. Young and H.D. Ellis (eds.), (Amsterdam: Elsevier Sci.Publ, 1989) pp. 487–506.
A.W. Young, and H.D. Ellis (eds.): Handbook of Research on Face Processing, (Amsterdam: Elsevier Sci. Publ., 1989).
D. Hubel and T. Wiesel: “Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex”, J. Physiol.(London), 1962, vol. 160, pp. 106–154.
D. Hubel and T. Wiesel: “Sequence regularity and geometry of orientation columns in the monkey striate cortex”, J. Comput.Neurol., Vol. 158 (1974) pp. 267–293.
J.P. Jones and L.A. Palmer: “An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex”, Journal of Neurophysiology, Vol. 58 (1987) pp. 1233–1258.
J. Daugman: “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters”, J. Opt. Soc. Amer., Vol. 2 (1985) No. 7, pp. 1160–1169.
J. Daugman: “Two-dimensional spectral analysis of cortical receptive field profiles”, Vis.Res., Vol. 20 (1980) pp. 847–856.
J.G. Daugman: “Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression”, IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 36 (1988) No. 7, pp. 1169–1179.
D.A. Pollen and S.F. Ronner: “Phase relationships between adjacent simple cells in the visual cortex”, Science, Vol. 212 (1981) pp. 1409–1411.
M. Connoly and D. van Essen: “The representation of the visual field in parvocellular and magnocellular layers in the lateral geniculate nucleus in the macaque monkey”, J. Comput. Neurol, Vol. 226 (1984) pp. 544–564.
N. Petkov, T. Lourens and P.Kruizinga: “Computationally intensive approach to face recognition”, Comp. Sc. Notes, CS9207, Department of Computer Science, University of Groningen, December 1992.
M. Lades, J.C. Vorbrüggen, J. Buhmann, J. Lange, C. von der Malsburg, R.P. Würtz, W. Konen: “Distortion invariant object recognition in the dynamic link architecture”, to appear in IEEE Trans. on Comp.
H. Boattour, F. Fogelman Soulié and E. Viennet: “Solving the human face recognition task using neural nets”, Proceedings of the ICANN-92, Brighton, September 1992, pp.1595–1598.
E. Viennet and F. Fogelman Soulié: “Scene segmentation using multiresolution analysis and MLP”, Proceedings of the ICANN-92, Brighton, September 1992, pp.1599–1602.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Petkov, N., Kruizinga, P., Lourens, T. (1993). Biologically motivated approach to face recognition. In: Mira, J., Cabestany, J., Prieto, A. (eds) New Trends in Neural Computation. IWANN 1993. Lecture Notes in Computer Science, vol 686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56798-4_126
Download citation
DOI: https://doi.org/10.1007/3-540-56798-4_126
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-56798-1
Online ISBN: 978-3-540-47741-9
eBook Packages: Springer Book Archive