[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Biologically motivated approach to face recognition

  • Conference paper
  • First Online:
New Trends in Neural Computation (IWANN 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 686))

Included in the following conference series:

Abstract

A biologically motivated compute intensive approach to computer vision is developed and applied to the problem of face recognition. The approach is based on the use of two-dimensional Gabor functions that fit the receptive fields of simple cells in the primary visual cortex of mammals. A descriptor set that is robust against translations is extracted by a global reduction operation and used for a search in an image database. The method was applied on a database of 205 face images of 30 persons and a recognition rate of 94% was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Petkov: “Systolic simulation of multilayer, feedforward neural networks”, Proc. Int. Conf. on Parallel Processing in Neural Systems and Computers, Düsseldorf, 1990, ed. by R. Eckmiller, G. Hartmann and G. Hauske (Amsterdam: North-Holland, 1990) pp. 303–306.

    Google Scholar 

  2. N. Petkov: Systolic Parallel Processing (Amsterdam: North-Holland, Elsevier Sci. Publ., 1992).

    Google Scholar 

  3. W.W. Bledsoe: “Man-machine facial recognition”, Technical Report PRI:22, Panoramic Research Inc., (Paolo Alto, CA, 1966).

    Google Scholar 

  4. A.J. Goldstein, L.D. Harmon, and A.B. Lesk: “Identification of human faces”, In Proc. IEEE, Vol. 59 (1971) pp. 748.

    Google Scholar 

  5. T. Kanade: “Picture processing by computer complex and recognition of human faces”, Technical Report, Kyoto University, Dept. of Information Science, 1973.

    Google Scholar 

  6. Y. Kaya and K. Kobayashi: “A basic study on human face recognition”, in S. Watanabe (ed.) Frontiers of Pattern Recognition (1972) pp. 265.

    Google Scholar 

  7. D.J. Burr: “Elastic matching of line drawings”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 3 (1981) No. 6, pp. 708–713.

    Google Scholar 

  8. J. Buhmann, J. Lange, and C. von der Malsburg: “Distortion invariant object recognition by matching hierarchically labeled graphs”, Proceedings of IJCNN'89 (1989) pp. 151–159.

    Google Scholar 

  9. A.L. Yuille: “Deformable templates for face recognition”, Journal of Cognitive Neuroscience, Vol. 3 (1991) No.1, pp. 59–70.

    Google Scholar 

  10. B.S. Manjunath, R. Chellappa, and C. von der Malsburg: “A feature based approach to face recognition”, Proc. 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Champaign, Illinois, June 1992, pp. 373–378

    Google Scholar 

  11. M. Turk and A. Pentland: “Eigenfaces for recognition”, Technical Report 154, MIT Media Lab Vision and Modelling Group, 1990.

    Google Scholar 

  12. M. Turk and A. Pentland: “Face recognition using eigenfaces”, Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, Hawaii, June 1991, pp. 586–591.

    Google Scholar 

  13. Zi-Quan Hong: “Algebraic feature extraction of image for recognition” Pattern Recognition Vol. 24 (1991) No.3, pp. 211–219.

    Google Scholar 

  14. O. Nakamura, S. Mathur, and T. Minami: “Identification of human faces based on isodensity maps”, Pattern Recognition, Vol. (1991) No.3, pp.263–272.

    Google Scholar 

  15. M. Lades, J.C. Vorbrüggen, J. Buhmann, J. Lange, C. von der Malsburg, R.P. Würtz, and W. Konen: “Distortion invariant object recognition in the dynamic link architecture”, 1991 (preprint).

    Google Scholar 

  16. T. Kohonen: Self-Organization and Associative Memory, (New York: Springer Verlag, 1989).

    Google Scholar 

  17. A. Fuchs and H. Haken: “Pattern recognition and associative memory as dynamical processes in a synergetic system II”. Biological Cybernetics, Vol. 60 (1988), pp. 107–109.

    Google Scholar 

  18. G. Cottrell and M. Fleming: “Face recognition using unsupervised feature extraction”, Proceedings of the International Neural Network Conference, 1990.

    Google Scholar 

  19. V. Bruce and M. Burton: “Computer recognition of faces”, in Handbook of Research on Face Processing, A.W. Young and H.D. Ellis (eds.), (Amsterdam: Elsevier Sci.Publ, 1989) pp. 487–506.

    Google Scholar 

  20. A.W. Young, and H.D. Ellis (eds.): Handbook of Research on Face Processing, (Amsterdam: Elsevier Sci. Publ., 1989).

    Google Scholar 

  21. D. Hubel and T. Wiesel: “Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex”, J. Physiol.(London), 1962, vol. 160, pp. 106–154.

    Google Scholar 

  22. D. Hubel and T. Wiesel: “Sequence regularity and geometry of orientation columns in the monkey striate cortex”, J. Comput.Neurol., Vol. 158 (1974) pp. 267–293.

    Google Scholar 

  23. J.P. Jones and L.A. Palmer: “An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex”, Journal of Neurophysiology, Vol. 58 (1987) pp. 1233–1258.

    Google Scholar 

  24. J. Daugman: “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters”, J. Opt. Soc. Amer., Vol. 2 (1985) No. 7, pp. 1160–1169.

    Google Scholar 

  25. J. Daugman: “Two-dimensional spectral analysis of cortical receptive field profiles”, Vis.Res., Vol. 20 (1980) pp. 847–856.

    Google Scholar 

  26. J.G. Daugman: “Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression”, IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 36 (1988) No. 7, pp. 1169–1179.

    Google Scholar 

  27. D.A. Pollen and S.F. Ronner: “Phase relationships between adjacent simple cells in the visual cortex”, Science, Vol. 212 (1981) pp. 1409–1411.

    Google Scholar 

  28. M. Connoly and D. van Essen: “The representation of the visual field in parvocellular and magnocellular layers in the lateral geniculate nucleus in the macaque monkey”, J. Comput. Neurol, Vol. 226 (1984) pp. 544–564.

    Google Scholar 

  29. N. Petkov, T. Lourens and P.Kruizinga: “Computationally intensive approach to face recognition”, Comp. Sc. Notes, CS9207, Department of Computer Science, University of Groningen, December 1992.

    Google Scholar 

  30. M. Lades, J.C. Vorbrüggen, J. Buhmann, J. Lange, C. von der Malsburg, R.P. Würtz, W. Konen: “Distortion invariant object recognition in the dynamic link architecture”, to appear in IEEE Trans. on Comp.

    Google Scholar 

  31. H. Boattour, F. Fogelman Soulié and E. Viennet: “Solving the human face recognition task using neural nets”, Proceedings of the ICANN-92, Brighton, September 1992, pp.1595–1598.

    Google Scholar 

  32. E. Viennet and F. Fogelman Soulié: “Scene segmentation using multiresolution analysis and MLP”, Proceedings of the ICANN-92, Brighton, September 1992, pp.1599–1602.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Joan Cabestany Alberto Prieto

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Petkov, N., Kruizinga, P., Lourens, T. (1993). Biologically motivated approach to face recognition. In: Mira, J., Cabestany, J., Prieto, A. (eds) New Trends in Neural Computation. IWANN 1993. Lecture Notes in Computer Science, vol 686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56798-4_126

Download citation

  • DOI: https://doi.org/10.1007/3-540-56798-4_126

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56798-1

  • Online ISBN: 978-3-540-47741-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics