[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Compact metric information systems

Extended abstract

  • Conference paper
  • First Online:
Semantics: Foundations and Applications (REX 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 666))

  • 169 Accesses

Abstract

We present information systems for compact metric spaces using the notions of diameter and strong inclusion of open sets. It is shown that the category of compact metric information systems and metric approximable mappings, dual to the category of compact metric spaces and non-expansive maps, is a partially complete I-category in which canonical solution of domain equations can be found by taking the union (least upper bound) of certain Cauchy chains. For the class of contracting functors, the domain equation has a unique solution. We present such a class which includes the product, the co-product and the hyperspace functor (with Hausdorff metric).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Abramsky. A Cooks tour of the finitary non-well founded sets (abstract). EATCS Bulletin, 36:233–234, 1988.

    Google Scholar 

  2. P. America and J. Rutten. Solving reflexive domain equations in a category of complete metric spaces. In 3rd workshop on mathematical foundations of programming language semantics, volume 298 of Lecture Notes in Computer Science, pages 254–288. Springer Verlag, 1988.

    Google Scholar 

  3. G. Berry and P.-L. Curien. Sequential algorithms on concrete data structures. Technical report, Report of Ecole Nationale Superieure des Mines de Paris, Centre de Mathematiques Appliquées, Sophia Antipolis, 1981.

    Google Scholar 

  4. B. Banaschewski and A. Pultr. Cauchy points of metric locales. Can. J. Math., 41:830–854, 1989.

    Google Scholar 

  5. J. W. de Bakker and J. Zucker. Processes and the denotational semantics of concurrency. Information and Control, 54:70–120, 1982.

    Google Scholar 

  6. A. Edalat and M. B. Smyth. Categories of information systems. In D. H. Pitt, P. L. Curien, S. Abramsky, A. M. Pitts, A. Poigne, and D. E. Rydeheard, editors, Category theory in computer science, pages 37–52. Springer-Verlag, 1991.

    Google Scholar 

  7. A. Edalat and M. B. Smyth. I-categories as a framework for solving domain equations. Theoretical Computer Science, 1992. to appear.

    Google Scholar 

  8. M. E. Majster-Cederbaum and F. Zetzsche. Towards a foundation for semantics in complete metric spaces. Information and Computation, 90:217–243, 1991.

    Google Scholar 

  9. E. Michael. Topologies on spaces of subsets. Trans. Amer. Math. Soc, 71:152–82, 1951.

    Google Scholar 

  10. D. S. Scott. Domains for denotational semantics. In M. Nielson and E. M. Schmidt, editors, Automata, Languages and Programming: Proceedings 1982. Springer-Verlag, Berlin, 1982. Lecture Notes in Computer Science 140.

    Google Scholar 

  11. M. B. Smyth. Effectively given domains. Theoretical Computer Science, 5:257–274, 1977.

    Google Scholar 

  12. M. B. Smyth. Completeness of quasi-uniform and syntopological spaces. Journal of London Mathematical Society, 1992. to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. W. de Bakker W. -P. de Roever G. Rozenberg

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Edalat, A., Smyth, M.B. (1993). Compact metric information systems. In: de Bakker, J.W., de Roever, W.P., Rozenberg, G. (eds) Semantics: Foundations and Applications. REX 1992. Lecture Notes in Computer Science, vol 666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56596-5_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-56596-5_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56596-3

  • Online ISBN: 978-3-540-47595-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics