Abstract
We present information systems for compact metric spaces using the notions of diameter and strong inclusion of open sets. It is shown that the category of compact metric information systems and metric approximable mappings, dual to the category of compact metric spaces and non-expansive maps, is a partially complete I-category in which canonical solution of domain equations can be found by taking the union (least upper bound) of certain Cauchy chains. For the class of contracting functors, the domain equation has a unique solution. We present such a class which includes the product, the co-product and the hyperspace functor (with Hausdorff metric).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. Abramsky. A Cooks tour of the finitary non-well founded sets (abstract). EATCS Bulletin, 36:233–234, 1988.
P. America and J. Rutten. Solving reflexive domain equations in a category of complete metric spaces. In 3rd workshop on mathematical foundations of programming language semantics, volume 298 of Lecture Notes in Computer Science, pages 254–288. Springer Verlag, 1988.
G. Berry and P.-L. Curien. Sequential algorithms on concrete data structures. Technical report, Report of Ecole Nationale Superieure des Mines de Paris, Centre de Mathematiques Appliquées, Sophia Antipolis, 1981.
B. Banaschewski and A. Pultr. Cauchy points of metric locales. Can. J. Math., 41:830–854, 1989.
J. W. de Bakker and J. Zucker. Processes and the denotational semantics of concurrency. Information and Control, 54:70–120, 1982.
A. Edalat and M. B. Smyth. Categories of information systems. In D. H. Pitt, P. L. Curien, S. Abramsky, A. M. Pitts, A. Poigne, and D. E. Rydeheard, editors, Category theory in computer science, pages 37–52. Springer-Verlag, 1991.
A. Edalat and M. B. Smyth. I-categories as a framework for solving domain equations. Theoretical Computer Science, 1992. to appear.
M. E. Majster-Cederbaum and F. Zetzsche. Towards a foundation for semantics in complete metric spaces. Information and Computation, 90:217–243, 1991.
E. Michael. Topologies on spaces of subsets. Trans. Amer. Math. Soc, 71:152–82, 1951.
D. S. Scott. Domains for denotational semantics. In M. Nielson and E. M. Schmidt, editors, Automata, Languages and Programming: Proceedings 1982. Springer-Verlag, Berlin, 1982. Lecture Notes in Computer Science 140.
M. B. Smyth. Effectively given domains. Theoretical Computer Science, 5:257–274, 1977.
M. B. Smyth. Completeness of quasi-uniform and syntopological spaces. Journal of London Mathematical Society, 1992. to appear.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Edalat, A., Smyth, M.B. (1993). Compact metric information systems. In: de Bakker, J.W., de Roever, W.P., Rozenberg, G. (eds) Semantics: Foundations and Applications. REX 1992. Lecture Notes in Computer Science, vol 666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56596-5_33
Download citation
DOI: https://doi.org/10.1007/3-540-56596-5_33
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-56596-3
Online ISBN: 978-3-540-47595-8
eBook Packages: Springer Book Archive