Abstract
We investigate the question whether and to what extend the solution of central tasks of digital logic circuit design of a given Boolean function f benefits from a representation of f in terms of certain restricted decision graphs or branching programs.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. B. Akers: Binary Decision Diagrams, IEEE Trans. Computing, Vol C-27, No. 6, 509–516.
N. Alon, W. Maass: Meanders, Ramsey Theory and Lower Bounds, Proc. 27th ACM STOC, 1986, 30–39.
D. A. Barrington: Bounded-Width Polynomial-Size Branching Programs Recognize Exactly those Languages in NC 1, JCSS 38, 1989, 150–164.
M. Blum, A.K. Chandra, M.N. Wegman: Equivalence of Free Boolean Graphs Can Be Decided Probabilistically in Polynomial Time, IPL 10, 2, 1980, 80–82.
Y. Breitbart, H. B. Hunt III, D. Rosenkrantz: The Size of Binary Decision Diagrams Representing Boolean Functions, submitted to Inf. and Comp., 1991.
R. E. Bryant: Graph-Based Algorithms for Boolean Function Manipulation, IEEE Trans. Computers, C-35, 8, 1986, 677–691.
J. R. Burch, E. M. Clarke, K. L. McMillan, D.L. Dill: Sequential Circuit Verification Using Symbolic Model Checking, Proc. 27th IEEE DAC'90, 1990, 46–51.
E. Cerny, J. Gecse: Simulation of MOS Circuits by Decision Diagrams, IEEE Trans. Computer Aided Design, CAD-4, 4, 1985, 685–693.
R. L. Constable, H. B. Hunt III, S. Sahni: On the Computational Complexity of Scheme Equivalence, Proc. 8th Princeton Conf. on Information Sciences and Systems, 1974.
C. Damm, Ch. Meinel: Separating Complexity Classes, Related to Polynomial Size Ω-decision Trees, Proc. FCT'89, LNCS 380, 127–136.
M. Fuita, H. Fujisawa, N. Kawoto: Evaluation and Improvements of Boolean Comparison Method Based on Binary Decision Diagrams, Proc. IEEE ICCAD'88, 1988, 2–5.
J. Gergov, Ch. Meinel: Efficient Analysis and Manipulation of OBDDs Can Be Extended to Read-once-only Branching Programs, Forschungsbericht Nr. 92–10, Universität Trier, 1992.
M. Krause, Ch. Meinel, S. Waack: Separating the Eraser Turing Machine Classes L e, NL e, co-NL e and P e, Proc. MFCS'88, LNCS 324, 405–413.
M. Krause, S. Waack: On Oblivious Branching Programs of Linear Length, Proc. FCT'89, LNCS 380, 287–296.
C. Lee: Representation of Switching Circuits by Binary Decision Programs, Bell Systems Technical Journal 38, 1959, 985–999.
Ch. Meinel: Modified Branching Programs and Their Computational Power, Springer-Verlag, LNCS 370, 1989.
Ch. Meinel: Branching Programs-An Efficient Data Structure for Computer-Aided Circuit Design, Preprint UGH Paderborn, Nr. 93, 1991.
S. Muroga, Y. Kambayashi, H. C. Lai, J. N. Culliney: The Transduction Method, IEEE Trans. Computers, C-38, 1989, 1404–1424.
B. M. E. Moret: Decision Trees and Diagrams, ACM Computing Surveys, 14, 2, 1982, 593–623.
Ch. Meinel, S. Waack: Separating Complexity Classes Related to Bounded Alternating ω-Branching Programs, Preprint TU Berlin, No. 276/1991.
P. Pudlak, S. Žak: Space Complexity of Computations, Preprint, Univ. Prague, 1983.
I. Wegener: On the Complexity of Branching Programs and Decision Trees for Clique Functions, JACM Vol. 35, 2, 1988, 461–471.
S. Žak: An Exponential Lower Bound for One-Time-Only Branching Programs, Proc. MFCS'84, LNCS 176, 562–566.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1993 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gergov, J., Meinel, C. (1993). Analysis and manipulation of Boolean functions in terms of decision graphs. In: Mayr, E.W. (eds) Graph-Theoretic Concepts in Computer Science. WG 1992. Lecture Notes in Computer Science, vol 657. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56402-0_56
Download citation
DOI: https://doi.org/10.1007/3-540-56402-0_56
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-56402-7
Online ISBN: 978-3-540-47554-5
eBook Packages: Springer Book Archive