Abstract
An infinite sequence F={fn} ∞n=1 of one-output Boolean functions with the following three properties is constructed:
-
(1)
f n can be computed by a Boolean circuit with O(n) gates.
-
(2)
For any positive, nondecreasing, and unbounded function h : N → R, each Boolean circuit having an n/h(n) separator requires nonlinear number of gates to compute f n .
-
(3)
Each planar Boolean circuit requires Ω(n2) gates to compute f n .
Thus, one can say that f n has linear combinational complexity and a nonlinear practical combinational complexity because the constant-degree parallel architectures used in practice have their separators in O(n/log2 n).
Supported in part DFG-Grant DI 412/2-1.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A.V.-Ullman, J.D.-Yannakakis, M.: On notions of information transfer in VLSI circuits. In: Proc. 15th ACM STOC, ACM Press 1983, pp. 133–139.
Blum, N.: A Boolean function requiring 3n networksize. Theoretical Computer Science 28 (1984), pp. 337–345.
Brooks, R.L.: On coloring the nodes of network. In: Proc. Cambridge Philos. Soc. 37 (1941), 194–197.
Gaber-Galil, Z.: Explicit constructions of linear-sized superconcentrators. J. Comp. Syst. Sci. 22 (1981), 407–420.
Harper, L.H.-Savage, J.E.: Complexity made Simple. In: Proc. of the Intern. Symp. on Combinatorial Theory, Rom, Sept. 1973, pp. 2–15.
Harper, L.H.-Hsiek, W.N.-Savage, J.E.: A class of Boolean functions with linear combitional complexity. Theoretical Computer Science 1, No. 2 (1975), pp. 161–183.
Hromkovič, J.: The advantages of a new approach to defining the communication complexity of VLSI. Theor. Comp. Science 57 (1988), 97–111.
Hromkovič, J.: Some complexity aspects of VLSI computations. Part 1. A framework for the study of information transfer in VLSI circuits. Computers and Artificial Intelligence 7 (1988), No. 3, pp. 229–252.
Hromkovič, J.: Some complexity aspects of VLSI computations. Part 6. Communication complexity. Computers and Artificial Intelligence 8 (1989), No. 3, pp. 209–225.
Hr90 Hromkovič, J.: Nonlinear lower bounds on the number of processors of circuits with sublinear separators. Information and Computation, to appear.
Kumičáková-Jirásková, G.: Chomsky hierarchy and communication complexity. J. Inf. Process. Cybern. EIK 25 (1989), No. 4, 157–164.
Kloss, B.M.-Malyshev, V.A.: Bounds on complexity of some classes of functions. Vest. Mosk. Univ., Seria matem., mech., 1965, No. 4, pp. 44–51 (in Russian).
Lipton, R.J.-Sedgewick, R.: Lower bounds for VLSI. In: Proc. ACM STOC'81, ACM 1981, pp. 300–307.
Lipton, R.J.-Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36 (1979), No. 2, pp. 177–189.
Lozkin, C.A.-Rybko, A.N.-SapoŽenko, A.A.-Hromkovič, J.-škalikova, N.A.: On a approach to a bound on the area complexity of combinational circuits. In: Mathematical problems in computation theory. Proc. of the Banach Center Publications. Warsaw 1988, pp. 501–510 (in Russian), the full version of this paper is accepted for publication in Theor. Comp. Sci.
Lupanov, O.B.: Ob odnom metode siteza skhem (zv. VUZ radiofizika) 1 (1958), pp. 120–140 (in Russian).
McColl: Planar circuits have short specifications. In: Proc. 2nd STACS'85, Lecture Notes in Computer Science 18, Springer-Verlag 1985, pp. 231–242.
McColl-Paterson, M.P.: The planar realization of Boolean functions. Technical Report, University of Warwick 1984.
Paul, W.J.: A 2,5n — lower bound on the combinational complexity of Boolean functions. SIAM J. Comp. 6 (1977), pp. 427–443.
Papadimitriou, Ch.-Sipser, M.: Communication complexity. J. Computer System Sci. 28 (1984), pp. 260–269.
Redkin, N.P.: Proof of minimality of circuits consisting of functional elements. Problemy kibernetiki 38 (1981), pp. 181–216 (in Russian).
Schnorr, G.P.: Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen. Computing 13 (1974), pp. 155–171.
Schnorr, G.P.: A 3 · n lower bound on the network complexity of Boolean functions. Theor. Comp. Science 10 (1980), pp. 83–92.
Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell System Techn. J. 28 (1949), pp. 59–98.
Sopranenko, E.P.: Minimal realizations of functions by circuits using functional elements. Probl. Kibernetiki 15 (1965), pp. 117–134 (in Russian).
Turán, G.: Lower bounds for synchronous circuits and planar circuits. Infor. Proc. Lett. 30 (1989), pp. 37–40.
Ullman, J.: Computational Aspects of VLSI. Principles of Computer Science Series. Computer Science Press 1984.
Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner Series in Computer Science, John Wiley and Sons Ltd., and B.G. Teubner, Stuttgart 1987.
Yao, A.C.: The entropic limitation of VLSI computations. In: Proc. 13th Annual ACM STOC, ACM 1981, pp. 308–311.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gubáš, X., Hromkovič, J., Waczulík, J. (1992). A nonlinear lower bound on the practical combinational complexity. In: Finkel, A., Jantzen, M. (eds) STACS 92. STACS 1992. Lecture Notes in Computer Science, vol 577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55210-3_191
Download citation
DOI: https://doi.org/10.1007/3-540-55210-3_191
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55210-9
Online ISBN: 978-3-540-46775-5
eBook Packages: Springer Book Archive