[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast incremental planarity testing

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 623))

Included in the following conference series:

Abstract

The incremental planarity testing problem is to perform the following operations on a biconnected planar graph G of at most n vertices: test if an edge can be added between two vertices while preserving planarity; add edges and vertices that preserve planarity. Let m be the total number of operations. We present fast data structures for this problem that can be used in conjunction with the previous algorithm of Di Battista and Tamassia to achieve an O(α(m, n)) worst-case amortized time per test operation. If the graph is biconnected, a sequence of n additions can be performed in total time O(mα(m, n)) worst-case plus O(n) expected time. Our tree data structure is flexible and can answer in O(1) time queries about parents, roots, and nearest common ancestors while performing tree modifications such as inserting nodes, cutting edges, and merging or splitting nodes. If the graph is not biconnected then insertions of edges and vertices require O(log n) amortized expected time per operation.

Research partially supported by National Science Foundation Grant CCR-9008653.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. D. Battista and R. Tamassia. Incremental planarity testing. In Proc. 30th IEEE FOCS, pages 436–441, 1989.

    Google Scholar 

  2. G. D. Battista and R. Tamassia. On-line graph algorithms with SPQR-trees. In Proc. 17th ICALP, 1990.

    Google Scholar 

  3. K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. System Sci., 13:335–379, 1976.

    Google Scholar 

  4. P. F. Deitz and D. D. Sleator. Two algorithms for maintaining order in a list. In Proc. 19th ACM STOC, pages 365–372, 1987.

    Google Scholar 

  5. M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. auf der Heide, H. Rohnert, and R. E. Tarjan. Dynamic perfect hashing: upper and lower bounds. In Proceedings 29th IEEE FOCS, pages 524–531, 1988.

    Google Scholar 

  6. M. L. Fredman and M. E. Saks. The cell probe complexity of dynamic data structures. In Proc. 21st ACM STOC, pages 345–354, Seattle, WA, May 1989.

    Google Scholar 

  7. H. N. Gabow. Data structures for weighted matching and nearest common ancestors with linking. In Proc. 1st ACM-SIAM SODA, pages 434–443, 1990.

    Google Scholar 

  8. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci., 30:209–211, 1985.

    Article  Google Scholar 

  9. F. Harary. Graph Theory. Addison-Wesley, Reading, MA., 1972.

    Google Scholar 

  10. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J. Comput, 13(2):338–355, 1984.

    Article  Google Scholar 

  11. J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM J. Comput, 2:135–158, 1973.

    Article  Google Scholar 

  12. J. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM, 21:549–568, 1974.

    Article  Google Scholar 

  13. H. Imai and T. Asano. Dynamic orthogonal segment intersection search. Journal of Algorithms, 8:1–18, 1987.

    Article  Google Scholar 

  14. G. F. Italiano and Z. Galil. Fully dynamic algorithms for edge connectivity problems. In 23rd ACM STOC, pages 317–327, 1991.

    Google Scholar 

  15. J.A. La Poutré. Lower bounds for the union-find and split-find problems on pointer machines. In Proc. 22nd ACM Symposium on Theory of Computing, pages 34–44, 1990.

    Google Scholar 

  16. J. A. La Poutré. On-line maintenance of triconnected components. These proceedings.

    Google Scholar 

  17. V. Ramachandran and J. H. Reif. An optimal parallel algorithm for graph planarity. In Proc. 30th FOCS, pages 282–287, 1989.

    Google Scholar 

  18. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22:215–225, 1975.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Kuich

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Westbrook, J. (1992). Fast incremental planarity testing. In: Kuich, W. (eds) Automata, Languages and Programming. ICALP 1992. Lecture Notes in Computer Science, vol 623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55719-9_86

Download citation

  • DOI: https://doi.org/10.1007/3-540-55719-9_86

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55719-7

  • Online ISBN: 978-3-540-47278-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics