[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Logarithmic time NC algorithms for comparability graphs and circle graphs

  • Parallel Processing And Systems
  • Conference paper
  • First Online:
Advances in Computing and Information — ICCI '91 (ICCI 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 497))

Included in the following conference series:

Abstract

We have given logarithmic time parallel algorithms for solving the maximum weighted clique and the minimum coloring problems on comparability graphs, the maximum weighted independent set and the minimum clique cover problems on permutation graphs, and the maximum weighted clique problem on circle problems. Our algorithms are more efficient than the previous ones. A number of questions are still open. An interesting one is whether the problems studied here can be solved using fewer processors without time penalty. It seems likely that there will be a positive answer to this question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. S. Adhar and S. Peng. Parallel algorithms for cographs recognition and applications. In F. Dehne, J.-R. Sack, and N. Santoro, editors, Proc. Workshop on Algorithms and Data Structures (Carleton University, Ottawa, Ontario, Canada, August 17–19), Lecture Notes in Computer Science, Vol. 382, pages 335–351. Springer-Verlag, 1989.

    Google Scholar 

  2. G. S. Adhar and S. Peng. Parallel algorithms for cographs and parity graphs with applications. J. Algorithms, 11(2):252–284, June 1990.

    Article  Google Scholar 

  3. S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice Hall, Englewood Cliffs, N.J., 1989.

    Google Scholar 

  4. L. Chen and Y. Yesha. Parallel testing for the consecutive ones property and transformable convex bipartite graphs and finding a maximum matching. In Proc. 27th Ann. Allerton Conf. on Communication, Control, and Computing (Monticello, Illinois, Sept. 27–29), pages 756–765. University of Illinois at Urbana-Champaign, 1989.

    Google Scholar 

  5. L. Chen and Y. Yesha. Parallel recognition of the consecutive ones property with applications. J. Algorithms, 12 (3), September 1991. (scheduled)

    Google Scholar 

  6. D. G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible graphs. Discrete Applied Mathematics, 3(3):163–174, 1981.

    Article  Google Scholar 

  7. S. Even and A. Itai. Queues, stacks and graphs. In Z. Kohavi and A. Paz, editors, Theory of Machines and Computations, pages 71–86. Academic Press, New York, 1971.

    Google Scholar 

  8. C. P. Gabor, W.-L. Hsu, and K. J. Supowit. Recognizing circle graphs in polynomial time. In Proc. 26th Ann. Symp. on Foundations of Computer Science, pages 106–116. IEEE Computer Society, 1985.

    Google Scholar 

  9. F. Gavril. Algorithms for a maximum clique and a minimum independent set of a circle graph. Networks, 3:261–273, 1973.

    Google Scholar 

  10. M. Goldberg and T. Spencer. A new parallel algorithm for the maximal independent set problem. In Proc. 28th Ann. Symp. on Foundations of Computer Science, pages 161–165. IEEE Computer Society, 1987.

    Google Scholar 

  11. M. Goldberg and T. Spencer. Constructing a maximal independent set in parallel. SIAM J. on Discr. Math., 2(3):322–328, August 1989.

    Article  Google Scholar 

  12. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Computer Science and Applied Mathematics. Academic Press, New York, 1980.

    Google Scholar 

  13. D. Helmbold and E. Mayr. Perfect graphs and parallel algorithms. In Proc. International Conference on Parallel Processing, pages 853–860, 1986.

    Google Scholar 

  14. W.-L. Hsu. Maximum weight clique algorithms for circular-arc graphs and circle graphs. SIAM Journal on Computing, 14:224–231, 1985.

    Google Scholar 

  15. D. S. Johnson. The NP-completeness column: an ongoing guide. J. Algorithms, 6:434–451, 1985.

    Article  Google Scholar 

  16. R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent set problem. Journal of the ACM, 32(4):762–773, 1985.

    Google Scholar 

  17. L. Lovász. A characterization of perfect graphs. J. Combin. Theory B, 13:95–98, 1972.

    Google Scholar 

  18. M. Luby. A simple parallel algorithm for the maximal independent set problem. In Proc. 17th Annual Symposium on Theory of Computing (Providence, RI), pages 1–10. Association for Computing Machinery, 1985.

    Google Scholar 

  19. S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa. Efficient algorithms for finding maximum cliques of an overlap graph. Networks, 20:157–171, 1990.

    Google Scholar 

  20. M. B. Novick. Logarithmic time parallel algorithms for comparability and interval graphs. Technical Report TR89-1015, Cornell University, June 1989.

    Google Scholar 

  21. A. Pnueli, A. Lempel, and S. Even. Transitive orientation of graphs and identification of permutation graphs. Canad. J. Math., 23:160–175, 1971.

    Google Scholar 

  22. C. Rhee, S. K. Dhall, and S. Lakshmivarahan. An NC algorithm for finding a maximum weight clique on a circle graph. In Proc. 27th Ann. Allerton Conf. on Communication, Control, and Computing (Monticello, Illinois, Sept. 27–29), pages 776–777. University of Illinois at Urbana-Champaign, 1989.

    Google Scholar 

  23. D. Rotem and J. Urrutia. Finding maximum cliques in circle graphs. Networks, 11(3):269–278, 1981.

    Google Scholar 

  24. R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM Journal on Computing, 14(4):862–874, November 1985.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Frantisek Fiala Waldemar W. Koczkodaj

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, L. (1991). Logarithmic time NC algorithms for comparability graphs and circle graphs. In: Dehne, F., Fiala, F., Koczkodaj, W.W. (eds) Advances in Computing and Information — ICCI '91. ICCI 1991. Lecture Notes in Computer Science, vol 497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54029-6_186

Download citation

  • DOI: https://doi.org/10.1007/3-540-54029-6_186

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54029-8

  • Online ISBN: 978-3-540-47359-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics