[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The gap-language-technique revisited

  • Conference paper
  • First Online:
Computer Science Logic (CSL 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 533))

Included in the following conference series:

Abstract

Generalizing work of Schöning and others concerning gap language constructs recognizable in polynomial time we examine structural properties of reducibilities defined for various “lower” or “parallel” complexity classes. Finally we show how the proof techniques for the above can be used to show the existence of easy complexity cores for sets which cannot be decided in logarithmic space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Ambos-Spies, Polynomial time degrees of NP-sets; in: E. Börger, Trends in Theoretical Computer Science, Computer Science Press, Rockville 1988, 95–142.

    Google Scholar 

  2. J. L. Balcázar, J. Díaz, J. Gabarró, Structural Complexity I; Springer, Berlin, 1988.

    Google Scholar 

  3. R. Book, D.-Z. Du, D. Russo, On polynomial and generalized complexity cores; Proc. 3rd Structure (1988), 236–250.

    Google Scholar 

  4. A. K. Chandra, L. Stockmeyer, U. Vishkin, Constant depth reducibility; SIAM J. Comput. (13) (1984), 423–439.

    Article  Google Scholar 

  5. P. Chew, M. Machtey, A note on structure and looking back applied to the relative complexity of computable functions; J. Comput. System Sci.22 (1981), 53–59.

    Article  Google Scholar 

  6. S. A. Cook, A taxonomy of problems with fast parallel Algorithms; Inf. & Contr. 64 (1985), 2–22.

    Google Scholar 

  7. R. E. Ladner, On the structure of polynomial time reducibility, J. ACM16 (1975), 155–171.

    Article  Google Scholar 

  8. L. H. Landweber, R. J. Lipton, E. L. Robertson, On the structure of sets in NP and other complexity classes; Theoret. Comput. Sci.1 (1975), 103–123.

    Article  Google Scholar 

  9. N. Lynch, On reducibility to complex or sparse sets; J.ACM22 (1975), 341–345.

    Article  Google Scholar 

  10. P. Orponen, U. Schöning, The density and complexity of polynomial cores for intractable sets; Inf. & Contr.70 (1986), 54–68.

    Google Scholar 

  11. H. Rogers Jr., Theory of Recursive Functions and Effective Computability; McGraw-Hill, New York, 1967.

    Google Scholar 

  12. R. I. Soare, Recursively Enumerable Sets and Degrees; Springer, Berlin, 1986.

    Google Scholar 

  13. U. Schöning, A uniform approach to obtain diagonal sets in complexity classes; Theoret. Comput. Sci.18 (1982), 95–103.

    Article  Google Scholar 

  14. U. Schöning, Minimal pairs for P, Theoret. Comput. Sci.31 (1984), 41–48.

    Article  Google Scholar 

  15. D. Schmidt, The recursion-theoretic structure of complexity classes; Theoret. Comput. Sci.38 (1985), 143–156.

    Article  Google Scholar 

  16. M. Serna, The parallel approximability of P-complete problems; Tesis doctoral, Facultat d'Informàtica de Barcelona (1990).

    Google Scholar 

  17. J. Torán, Structural properties of the counting hierarchies; Tesis doctoral, Facultat d'Informàtica de Barcelona (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Egon Börger Hans Kleine Büning Michael M. Richter Wolfgang Schönfeld

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vollmer, H. (1991). The gap-language-technique revisited. In: Börger, E., Kleine Büning, H., Richter, M.M., Schönfeld, W. (eds) Computer Science Logic. CSL 1990. Lecture Notes in Computer Science, vol 533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54487-9_72

Download citation

  • DOI: https://doi.org/10.1007/3-540-54487-9_72

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54487-6

  • Online ISBN: 978-3-540-38401-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics