[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Sparse matrix algorithms for SUPRENUM

  • Parallel Linear Algebra
  • Conference paper
  • First Online:
CONPAR 90 — VAPP IV (VAPP 1990, CONPAR 1990)

Abstract

In this talk we will present the SUPRENUM multiprocessor system and some implementations of parallelized sparse matrix algorithms. The SUPRENUM multiprocessor system was delivered late in 1989 for the first time. It is the result of a research project where German research institutes, universities and industrial companies worked together to built a 256 processor distributed memory machine. In parallel with the construction of the SUPRENUM a lot of time and man power was invested for the software support of the project. As an important application in scientific computation we parallelized the solution of systems of linear equations Ax=b. For realistic problems the large coefficient matrix A is sparse most of the time, i.e. a large number of its entries are zero. We show how direct algorithms based on Gauss Elimination and semi-iterative algorithms (Conjugate Gradient Methods) can be implemented on SUPRENUM. Especially the Conjugate Gradient Methods which are very well suited for parallelization and vectorization proved to be very efficient on multiprocessor architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature

  1. Ansgar Böhm: Parallelisierung und Implementierung von vorkonditionierten konjugierten Gradientenverfahren auf dem SUPRENUM Simulationssystem, Studienarbeit am Lehrstuhl III des IMMD, Erlangen 1989

    Google Scholar 

  2. James R. Bunch et al.: Sparse Matrix Computations, Academic Press, London 1976

    Google Scholar 

  3. Charbel Farhat: Computational Engineering Software, AERO 593-3 Lecture Notes, Fall Semester 1987/88, University of Colorado, Boulder 1987

    Google Scholar 

  4. Ian S. Duff et al.: Direct Methods for Sparse Matrices, Clarendon Press, Oxford 1986

    Google Scholar 

  5. D. J. Evans: Sparsity and its Applications, Cambridge University Press, Sydney 1985

    Google Scholar 

  6. Thomas Gast: Parallelisierung eines direkten Verfahrens zur Lösung von schwachbesetzten linearen Gleichungssystemen für Multiprozessoren mit verteiltem Speicher, Diplomarbeit am Lehrstuhl III des IMMD, Erlangen 1989

    Google Scholar 

  7. Wolfgang K. Giloi et al.: The German Supercomputer Architecture — Rationale and Concepts, Proc. 1986 Internatio-nal Conference on Parallel Processing, pp. 567–575, IEEE Computer Soc. Press, Washington D.C. 1986

    Google Scholar 

  8. Gene H. Golub et. al.: A Generalized Conjugate Gradient Method for the Numerical Solution of Elliptic Partial Differential Equations, in Sparse Matrix Computation Academic Press, New York 1976

    Google Scholar 

  9. Gene H. Golub et. al.: Matrix Computations, North Oxford Academic, Oxford 1983

    Google Scholar 

  10. Axel Hein: Parallelisierung eines direkten Verfahrens zur Lösung eines linearen Gleichungssystems mit pfeilstrukturierter Koeffizientenmatrix auf dem SUPRENUM Simulationssystem, Studienarbeit am Lehrstuhl III des IMMD, Erlangen 1989

    Google Scholar 

  11. K. Hwang, F.A. Briggs: Computer Architecture and Parallel Processing, Mc Graw Hill, New York 1985

    Google Scholar 

  12. Harry F. Jordan, Jürgen Brehm: Parallelizing Algorithms for MIMD-Architectures with Shared Memory, Proceedings of the 1989 International Conference on Supercomputing, ACM, Crete 1989

    Google Scholar 

  13. D.S. Kershaw: The Incomplete Cholesky Conjuagte Gradient Method for the Iterative solution of Systems of Linear Equations, J. Comp. Phys. 26, Seiten 43–65, 1978

    Article  Google Scholar 

  14. F. Limburger et. al.: Benutzeranleitung des SUPRENUM Simulationssystems SUSI, Gesellschaft für Mathematik und Datenverarbeitung mbH, Institut für informationstechnische Infrastrukturen Z1, St. Augustin 1986

    Google Scholar 

  15. J. A. Meijerink, H.A. Van der Vorst: An Iterative Solution Method for Systems of which the Coefficient Matrix is a Symmetric M-Matrix, Math. Comp. 31, Seiten 148–162, 1977

    Google Scholar 

  16. Renate Otto: Parallelisierung eines Verfahrens zur Lösung dünn besetzter Matrizen, Diplomarbeit am Lehrstuhl III des IMMD, Erlangen 1988

    Google Scholar 

  17. Frans J. Peters Parallel Pivoting Algorithms for Sparse Symmetric Matrices, Parallel Computing I, p. 99–110, North Holland, 1984

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Helmar Burkhart

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brehm, J., Böhm, A., Volkert, J. (1990). Sparse matrix algorithms for SUPRENUM. In: Burkhart, H. (eds) CONPAR 90 — VAPP IV. VAPP CONPAR 1990 1990. Lecture Notes in Computer Science, vol 457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53065-7_93

Download citation

  • DOI: https://doi.org/10.1007/3-540-53065-7_93

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53065-7

  • Online ISBN: 978-3-540-46597-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics