Abstract
In this paper we present a parallel algorithm for computing the visibility polygon of a polygon P from a given point internal to P. The algorithm is based on a divide and conquer strategy and achieves a complexity of O(logn) on a PRAM with O(n) processors.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing and C. Yap, ”Parallel Computational geometry”, Proc. 26th FOCS, 468–477, 1985.
T. Asano, ”An efficient algorithm for finding the visibility polygon for a polygonal region with holes”, Trans. IECE-Japan, E-68, 557–559, 1985.
T. Asano, H. Umeo, ”Systolic algorithms for computing the visibility polygon and triangulation of a polygonal region”, Parallel Computing, 6, 209–217, 1988.
M. Atallah, M. T. Goodrich, ”Efficient solutions to some geometric problems”, Journal of Parallel and Distributed Computing, 3, 492–507, 1986.
H. E. Gindy, D. Avis, ”A linear algorithm for computing the visibility polygon from a point”, Journal of Algorithms, 2, 186–197, 1981.
R. E. Ladner, M. J. Fischer, ”Parallel prefix computation”, Journal ACM, 831–838, 1980.
E. Lodi, L. Pagli, ”A VLSI algorithm for a visibility problem”, VLSI: Algorithms and Architectures, (P. Bertolazzi and F. Luccio eds.), North-Holland, 125–136, 1985.
L. G. Valiant, ”Parallelism on comparison problems”, SIAM Journal on Computing, 348–355, 1975.
C. A. Wang, Y. H. Tsin, ”An O(log n) time parallel algorithm for triangulating a set of points in the plane”, Information Processing Letters, 25, 55–60, 1987.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bertolazzi, P., Guerra, C., Salza, S. (1989). A parallel algorithm for the visibility problem inside a simple polygon. In: Cantoni, V., Creutzburg, R., Levialdi, S., Wolf, G. (eds) Recent Issues in Pattern Analysis and Recognition. Lecture Notes in Computer Science, vol 399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51815-0_43
Download citation
DOI: https://doi.org/10.1007/3-540-51815-0_43
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-51815-0
Online ISBN: 978-3-540-46815-8
eBook Packages: Springer Book Archive