[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient Parallel Solution to Calculate All Cycles in Graphs

  • Conference paper
  • First Online:
Applied Parallel Computing (PARA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2367))

Included in the following conference series:

Abstract

This paper describes an implementation for Shared Memory Multiprocessor of a parallel algorithm to extract all cycles from a graph, using the cyclic conjunction operator. Validation of the parallel code was done using a set of graphs with different computational complexity on a shared memory multiprocessor, four load balance distribution was evaluated in the experiments. Obtained results show that parallel algorithm to be suitable for the extraction of all cycles from a graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.J. Corey and G.A. Petersson. An algorithm for machine perception of synthetically significant rings in complex cyclic organic structures. J. Am. Chem. Soc. 1972, 94, 460–465.

    Article  Google Scholar 

  2. Downs G. M., Gillet V. J., Holliday J. D., and Lynch M. F. Theoretical aspects of ring perception and development of the extended set of smallest rings concept. American Chemical Society, 1988, 29(3), 187–206.

    Google Scholar 

  3. I. Gutman and Strada E. Topological indexes based on the line graph of the molecular graph. Journal of Chemical Information and Computer Science, 1996, 36(3), 541–543.

    Google Scholar 

  4. K. Balasubramanian and B. Subhash. Characterization of isospectral graphs using graph invariants and derived orthogonal parameters. Journal of Chemical Information and Computer Science, 1998, 38(3), 367–373.

    Google Scholar 

  5. M. Bersohn. An algorithm for finding the synthetically important rings of a molecule. Theory Graphs, American Mathematical Society Colloquium Publications, 1973, 38, 1239–1241.

    Google Scholar 

  6. G. Cerruela García, I. Luque Ruiz, M.A. Gómez-Nieto. Un algoritmo en zig-zag para la obtención de un conjunto de ciclos característicos de un grafo, 2000, University of Córdoba, Internal Report UCO-ISCBD-JCVG93-00.

    Google Scholar 

  7. G. Cerruela García, I. Luque Ruiz, M.A. Gómez-Nieto. Cyclical Conjunction: An Efficient Operator for the Extraction of Cycles from a Graph (to be submitted for publication to J. Chem. Inf. Comput. Sci.)

    Google Scholar 

  8. G. C. Fox, et. al. Solving Problems on Comcurrent Proccesors. Prentice-Hall, Englewood Cliffs, N. J., 1988.

    Google Scholar 

  9. C. M. Pancake. Is Parallelism for You. IEEE Computational Science & Engenieering., 1996, 18–37.

    Google Scholar 

  10. Silicon Graphics, The Iris Power C User’s Guide (007-0702-030), 1999.

    Google Scholar 

  11. G. Amdahl. Validity of the Single-Processor Approach to Achiving Large-Scale Computing Capabilities. Proc. AFIPS Conf., 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García, G.C., Espinosa, E.L., Ruiz, I.L., Gómez-Nieto, M.A. (2002). Efficient Parallel Solution to Calculate All Cycles in Graphs. In: Fagerholm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V. (eds) Applied Parallel Computing. PARA 2002. Lecture Notes in Computer Science, vol 2367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48051-X_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-48051-X_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43786-4

  • Online ISBN: 978-3-540-48051-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics