Abstract
This paper describes an implementation for Shared Memory Multiprocessor of a parallel algorithm to extract all cycles from a graph, using the cyclic conjunction operator. Validation of the parallel code was done using a set of graphs with different computational complexity on a shared memory multiprocessor, four load balance distribution was evaluated in the experiments. Obtained results show that parallel algorithm to be suitable for the extraction of all cycles from a graph.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
E.J. Corey and G.A. Petersson. An algorithm for machine perception of synthetically significant rings in complex cyclic organic structures. J. Am. Chem. Soc. 1972, 94, 460–465.
Downs G. M., Gillet V. J., Holliday J. D., and Lynch M. F. Theoretical aspects of ring perception and development of the extended set of smallest rings concept. American Chemical Society, 1988, 29(3), 187–206.
I. Gutman and Strada E. Topological indexes based on the line graph of the molecular graph. Journal of Chemical Information and Computer Science, 1996, 36(3), 541–543.
K. Balasubramanian and B. Subhash. Characterization of isospectral graphs using graph invariants and derived orthogonal parameters. Journal of Chemical Information and Computer Science, 1998, 38(3), 367–373.
M. Bersohn. An algorithm for finding the synthetically important rings of a molecule. Theory Graphs, American Mathematical Society Colloquium Publications, 1973, 38, 1239–1241.
G. Cerruela García, I. Luque Ruiz, M.A. Gómez-Nieto. Un algoritmo en zig-zag para la obtención de un conjunto de ciclos característicos de un grafo, 2000, University of Córdoba, Internal Report UCO-ISCBD-JCVG93-00.
G. Cerruela García, I. Luque Ruiz, M.A. Gómez-Nieto. Cyclical Conjunction: An Efficient Operator for the Extraction of Cycles from a Graph (to be submitted for publication to J. Chem. Inf. Comput. Sci.)
G. C. Fox, et. al. Solving Problems on Comcurrent Proccesors. Prentice-Hall, Englewood Cliffs, N. J., 1988.
C. M. Pancake. Is Parallelism for You. IEEE Computational Science & Engenieering., 1996, 18–37.
Silicon Graphics, The Iris Power C User’s Guide (007-0702-030), 1999.
G. Amdahl. Validity of the Single-Processor Approach to Achiving Large-Scale Computing Capabilities. Proc. AFIPS Conf., 1967.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
García, G.C., Espinosa, E.L., Ruiz, I.L., Gómez-Nieto, M.A. (2002). Efficient Parallel Solution to Calculate All Cycles in Graphs. In: Fagerholm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V. (eds) Applied Parallel Computing. PARA 2002. Lecture Notes in Computer Science, vol 2367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48051-X_41
Download citation
DOI: https://doi.org/10.1007/3-540-48051-X_41
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43786-4
Online ISBN: 978-3-540-48051-8
eBook Packages: Springer Book Archive