Abstract
Automatic content extraction from multimedia files is a hot topic nowadays. Moving Picture Experts Group develops MPEG-7 standard, which aims to define a unified interface for multimedia content description, including audio data. Audio description in MPEG-7 comprises features that can be useful for any content-based search of sound files. In this paper, we investigate how to optimize sound representation in terms of musical instrument recognition purposes. We propose to trace trends in evolution of values of MPEG-7 descriptors in time, as well as their combinations. Described process is a typical example of KDD application, consisting of data preparation, feature extraction and decision model construction. Discussion of efficiency of applied classifiers illustrates capabilities of further progress in optimization of sound representation. We believe that further research in this area would provide background for automatic multimedia content description.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, I.: Fast Discovery of Association Rules. In: Proc. of the Advances in Knowledge Discovery and Data Mining. AAAI Press / The MIT Press, CA (1996) pp. 307–328.
Ando, S., Yamaguchi, K.: Statistical Study of Spectral Parameters in Musical Instrument Tones. J. Acoust. Soc. of America, 94,1, (1993) pp. 37–45.
Bazan, J.G., Nguyen, H.S., Nguyen, S.H, Synak, P., Wróblewski, J.: Rough Set Algorithms in Classification Problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds), Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems. Physica-Verlag (2000) pp. 49–88.
Bazan, J.G., Szczuka, M.: RSES and RSESlib-A collection of tools for rough set computations. In: Ziarko, W., Yao, Y.Y. (eds), Proc. of RSCTC’00, Banff, Canada (2000). See also: http://alfa.mimuw.edu.pl/~rses/.
Düntsch I., Gediga G., Nguyen H.S.: Rough set data analysis in the KDD process. In: Proc. of IPMU 2000, Madrid, Spain (2000) vol. 1, pp. 220–226.
Herrera, P., Amatriain, X., Batlle, E., Serra X.: Towards instrument segmentation for music content description: a critical review of instrument classification techniques. In: Proc. of ISMIR 2000, Plymouth, MA (2000).
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Report C-1997-15, University of Helsinki, Finland (1997).
ISO/IEC JTC1/SC29/WG11: Overview of the MPEG-7 Standard. Doc. N4031.
Liu, H., Motoda, H. (eds): Feature extraction, construction and selection-a data mining perspective. Kluwer Academic Publishers, Dordrecht (1998).
Martin, K.D., Kim, Y.E.: 2pMU9. Musical instrument identification: A pattern-recognition approach. 136-th meeting of the Acoustical Soc. of America (1998).
Nguyen S.H.: Regularity Analysis And Its Applications In Data Mining. Ph.D. Dissertation, Warsaw University, Poland (2000).
Opolko, F., Wapnick, J.: MUMS-McGill University Master Samples. CD’s (1987).
Pawlak, Z.: Rough sets-Theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991).
Pollard, H.F., Jansson, E.V.: A Tristimulus Method for the Specification of Musical Timbre. Acustica, Vol. 51 (1982) pp. 162–171.
Ślȩzak, D., Wróblewski, J.: Classification algorithms based on linear combinations of features. In: Proc. of PKDD’99. Praga, Czech Republik, LNAI 1704, Springer, Heidelberg (1999) pp. 548–553.
Synak, P.: Temporal templates and analysis of time related data. In: Ziarko, W., Yao, Y.Y. (eds), Proc. of RSCTC’00, Banff, Canada (2000).
Wieczorkowska, A.A.: The recognition efficiency of musical instrument sounds de-pending on parameterization and type of a classifier (in Polish), Ph.D. Dissertation, Technical University of Gdańsk, Poland (1999).
Wieczorkowska, A.A., Raś, Z.W.: Audio Content Description in Sound Databases. In: Zhong, N., Yao, Y., Liu, J., Ohsuga, S. (eds), Proc. of WI’01, Maebashi City, Japan, LNCS/LNAI 2198, Springer-Verlag (2001) pp. 175–183.
Wróblewski, J.: Analyzing relational databases using rough set based methods. In: Proc. of IPMU’00. Madrid, Spain (2000) 1, pp. 256–262.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ślȩzak, D., Synak, P., Wieczorkowska, A., Wróblewski, J. (2002). KDD-Based Approach to Musical Instrument Sound Recognition. In: Hacid, MS., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds) Foundations of Intelligent Systems. ISMIS 2002. Lecture Notes in Computer Science(), vol 2366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48050-1_5
Download citation
DOI: https://doi.org/10.1007/3-540-48050-1_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43785-7
Online ISBN: 978-3-540-48050-1
eBook Packages: Springer Book Archive