Abstract
In this paper, we study the issue of maintaining association rules in a large database of sales transactions. The maintenance of association rules can be mapped into the problem of maintaining large itemsets in the database. Because the mining of association rules is time-consuming, we need an efficient approach to maintain the large itemsets when the database is updated. In this paper, we present efficient approaches to solve the problem. Our approaches store the itemsets that are not large at present but may become large itemsets after updating the database, so that the cost of processing the updated database can be reduced. Moreover, we discuss the cases where the large itemsets can be obtained without scanning the original database. Experimental results show that our algorithms outperform other algorithms, especially when the original database need not be scanned in our algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases, Proc. ACM SIGMOD, (1993) 207–216
Cheung, D.W., Han, J., Ng, V.T., Wong, C.Y.: Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique, Proc. the International Conference on Data Engineering, (1996) 106–114
Cheung, D.W., Ng, V.T., Tam, B.W.: Maintenance of Discovered Knowledge: A case in Multi-level Association Rules, Proc. 2nd International Conference on Knowledge Discovery and Data Mining, (1996 ) 307–310
Cheung, D.W., Lee, S.D., Kao, B.: A general Incremental Technique for Mining Discovered Association Rules, Proc. International Conference on Database System for Advanced Applications, (1997) 185–194
Lee, K.L., Efficient Graph-Based Algorithms for Discovering and Maintaining Knowledge in Large Databases, NTHU Master Thesis, (1997)
Tsai, P.S.M., Lee, C.C., Chen, A.L.P.: An Efficient Approach for Incremental Association Rule Mining, Technical Report, (1998)
Yen, S.J., Chen, A.L.P.: An Efficient Approach to Discovering Knowledge from Large Databases, Proc. the IEEE/ACM International Conference on Parallel and Distributed Information System, (1996) 8–18
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tsai, P.S.M., Lee, CC., Chen, A.L.P. (1999). An Efficient Approach for Incremental Association Rule Mining. In: Zhong, N., Zhou, L. (eds) Methodologies for Knowledge Discovery and Data Mining. PAKDD 1999. Lecture Notes in Computer Science(), vol 1574. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48912-6_10
Download citation
DOI: https://doi.org/10.1007/3-540-48912-6_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65866-5
Online ISBN: 978-3-540-48912-2
eBook Packages: Springer Book Archive