Abstract
This paper investigates the combined use of query by sketch and relevance feedback as techniques to ease user interaction and improve retrieval effectiveness in content-based image retrieval over the World Wide Web. To substantiate our ideas we implemented DrawSearch, a prototype image retrieval by content system that uses color, shape and texture to index and retrieve images. The system avails of Java applets for query by sketch and uses relevance feedback to allow users dynamically refine queries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Communications of the ACM, 40, 12, 1997.
ACM Multimedia Systems, special issue on Multimedia Databases, 3, 5/6, 1995.
IEEE Computer, special issue on Content Based Image Retrieval, 28, 9, 1995.
G. Salton, Automatic Text Processing, Addison Wesley, 1989.
E. Di Sciascio, M. Mongiello, DrawSearch: a Tool for Interactive Content-Based Image Retrieval over the Net, in Proc. of SPIE vol. 3656,. 561–572, 1999.
Y. Rui, T.S. Huang, S. Mehrotra, Content based image retrieval with relevance feedback in MARS”, Proc. of IEEE ICIP’97, 1997.
A. Celentano, E. Di Sciascio, Features Integration and Relevance Feedback Analysis in Image Similarity Evaluation, Journal of Electronic Imaging, 7,2, 1998.
E. Di Sciascio, G. Piscitelli, A. Celentano, Textural Features and Relevance Feedback in Image Retrieval, in Visual Database Systems 4, Chapman and Hall, 1998.
H.G. Stark, On image retrieval with wavelets, Journal of Imaging Systems and Technology, 7, 200–210, 1996.
W. Niblak et al., The QBIC project: Querying images by content using color, texture, and shape, in Proc. of SPIE, vol. 1908, 173–182, 1993.
M. Flickner et al., Query by Image and Video Content: The QBIC System, IEEE Computer, 28,9, 23–31, 1995.
P. M. Kelly, T. M. Cannon, D. R. Rush, Query by image example: the CANDID approach, in Proc. of SPIE, vol. 2420, 238–248, 1995.
V. E. Ogle, M. Stonebrakes, Chabot: retrieval from a relational database of images, IEEE Computer, 28,9, 40–56, 1995
R. Bach et al., The Virage Image Search Engine: An open framework for image management, in Proc. of SPIE, vol. 2670, 76–87, 1996.
J.R. Smith, S.F. Chang, VisualSEEK: a fully automated content-based image query system, Proc. of ACM Multimedia’96, 1996.
W.Y. Ma, B.S. Manjunath, NETRA: A toolbox for navigating large image databases, Proc. IEEE ICIP’ 97, 1997.
R.W. Picard, T. Kabir, Finding similar patterns in large image databases, Proc. ICASSP, 1993.
K. Hirata, T. Kato, Query by visual example, content based image retrieval, Lecture Notes in Computer Science, vol. 580, 1992.
A Del Bimbo, P. Pala, Visual image retrieval by elastic matching of user sketches, IEEE Trans. PAMI, 19,2, 1997.
C. E. Jacobs, A. Finkelstein, D. H. Salesin. Fast Multiresolution Image Querying. Proc. of SIGGAPH 95, 1995.
Y. Rui, A.C. She, T.S. Huang, Modified Fourier descriptors for shape representation-a practical approach, Proc. of 1st workshop on image databases and multimedia search, 1996.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Di Sciascio, E., Mingolla, G., Mongiello, M. (1999). Content-Based Image Retrieval over the Web Using Query by Sketch and Relevance Feedback. In: Huijsmans, D.P., Smeulders, A.W.M. (eds) Visual Information and Information Systems. VISUAL 1999. Lecture Notes in Computer Science, vol 1614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48762-X_16
Download citation
DOI: https://doi.org/10.1007/3-540-48762-X_16
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66079-8
Online ISBN: 978-3-540-48762-3
eBook Packages: Springer Book Archive