[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient Image Retrieval through Vantage Objects

  • Conference paper
  • First Online:
Visual Information and Information Systems (VISUAL 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1614))

Included in the following conference series:

Abstract

We describe a new indexing structure for general image retrieval that relies solely on a distance function giving the similarity between two images. For each image object in the database, its distance to a set of m predetermined vantage objects is calculated; the m-vector of these distances specifies a point in the m-dimensional vantage space. The database objects that are similar (in terms of the distance function) to a given query object can be determined by means of an efficient nearest-neighbor search on these points. We demonstrate the viability of our approach through experimental results obtained with a database of about 48,000 hieroglyphic polylines.

This research was supported by SION project No. 612-21-201: Advanced Multimedia Indexing and Searching (AMIS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The extended library. Centre for Computer-Aided Egyptological Research, Faculty of Theology, Utrecht University, Utrecht, the Netherlands. http://www.ccer.theo.uu.nl/ccer/extlib.html.

  2. Edoardo Ardizzone, Marco La Cascia, Viti Di Gesú, and Cesare Valentie. Content based indexing of image and video databases by global and shape features. In Proc. Int. Conf. Pattern Recognition, 1996.

    Google Scholar 

  3. Esther M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and Joseph S. B. Mitchell. An efficiently computable metric for comparing polygonal shapes. IEEE Trans. Pattern Anal. Mach. Intell., 13(3):209–216, 1991.

    Article  Google Scholar 

  4. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for approximate nearest neighbor searching. In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, pages 573–582, 1994. An implementation is available from http://www.cs.umd.edu/~mount/ANN.

  5. J. L. Bentley. K-d trees for semidynamic point sets. In Proc. 6th Annu. ACM Sympos. Comput. Geom., pages 187–197, 1990.

    Google Scholar 

  6. S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An index structure for higher dimensional data. In Proc. 22th VLDB Conference, pages 28–39, 1996.

    Google Scholar 

  7. M. La Cascia and E. Ardizzone. JACOB: Just a content-based query system for video databases. In IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 1996.

    Google Scholar 

  8. Bernard Chazelle and Emo Welzl. Quasi-optimal range searching in spaces of finite VC-dimension. Discrete Comput. Geom., 4:467–489, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. L. Clarkson. Nearest neighbor queries in metric spaces. In Proc. 29th Annu. ACM Sympos. Theory Comput., pages 609–617, 1997.

    Google Scholar 

  10. S. D. Cohen and Leonidas J. Guibas. Partial matching of planar polylines under similarity transformations. In Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, pages 777–786, January 1997.

    Google Scholar 

  11. M. Hagedoorn and R. C. Veltkamp. Measuring resemblance of complex patterns. In Proc. Int. Conf. Discrete Geom. Comput. Imagery, 1999.

    Google Scholar 

  12. Norio Katayama and Shin’ichi Satoh. The SR-tree: An index structure for high-dimensional nearest neighbor queries. In SIGMOD’ 97, pages 369–380, 1997.

    Google Scholar 

  13. P. M. Kelly, T. M. Cannon, and D. R. Hush. Query by image example: the CANDID approach. In Proc. SPIE: Storage and Retrieval for Image and Video Databases III, volume 2420, pages 238–248, 1995.

    Google Scholar 

  14. J. Kleinberg. Two algorithms for nearest-neighbor search in high dimension. In Proc. 29th Annu. ACM Sympos. Theory Comput., pages 599–608, 1997.

    Google Scholar 

  15. K. I. Lin, H. V. Jagdish, and C. Faloutsos. The TV-tree: An index structure for higher dimensional data. VLDB Journal, 4:517–542, 1994.

    Article  Google Scholar 

  16. J. Matoušek. Efficient partition trees. Discrete Comput. Geom., 8:315–334, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom., 10(2):157–182, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  18. Rajiv Mehrotra and James E. Gary. Similar-shape retrieval in shape data management. IEEE Computer, 28:57–62, 1995.

    Google Scholar 

  19. W. Niblack, R. Barber, W. Equitz, M. Glasman, D. Petkovic, P. Yanker, C. Faloutsos, and G. Taubin. The QBIC project: Querying images by content using color, texture and shape. Storage Retrieval Image Video Databases, 1908:173–187, 1993.

    Google Scholar 

  20. Virginia E. Ogle and Michael Stonebraker. Chabot: Retrieval from a relational database of images. IEEE Computer, 28:40–48, 1995.

    Google Scholar 

  21. A. Pentland, R. W. Picard, and S. Sclaroff. Photobook: Tools for content-based manipulation of image databases. In Proc. SPIE: Storage and Retrieval for Image and Video Databases II, volume 2185, pages 34–47, 1994.

    Google Scholar 

  22. Otfried Schwarzkopf and Jules Vleugels. Range searching in low-density environments. Inform. Process. Lett., 60:121–127, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  23. Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Inform. Process. Lett., 40:175–179, 1991.

    Article  MATH  Google Scholar 

  24. D. A. White and R. Jain. Similarity indexing with the SS-tree. In Proc. 12th IEEE Internat. Conf. Data Engineering, pages 516–523, 1996.

    Google Scholar 

  25. H. J. Wolfson. Model-based object recognition by geometric hashing. In Proc. 1st Europ. Conf. Comp. Vision, pages 526–536, 1990.

    Google Scholar 

  26. P. N. Yianilos. Data structures and algorithms for nearest neighbor search in general metric spaces. In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages 311–321, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vleugels, J., Veltkamp, R. (1999). Efficient Image Retrieval through Vantage Objects. In: Huijsmans, D.P., Smeulders, A.W.M. (eds) Visual Information and Information Systems. VISUAL 1999. Lecture Notes in Computer Science, vol 1614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48762-X_71

Download citation

  • DOI: https://doi.org/10.1007/3-540-48762-X_71

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66079-8

  • Online ISBN: 978-3-540-48762-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics