[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Design and Implementation of the Fiduccia-Mattheyses Heuristic for VLSI Netlist Partitioning

  • Chapter
  • First Online:
Algorithm Engineering and Experimentation (ALENEX 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1619))

Included in the following conference series:

Abstract

We discuss the implementation and evaluation of move-based hypergraph partitioning heuristics in the context of VLSI design applications. Our first contribution is a detailed software architecture, consisting of seven reusable components, that allows flexible, efficient and accurate assessment of the practical implications of new move-based algorithms and partitioning formulations. Our second contribution is an assessment of the modern context for hypergraph partitioning research for VLSI design applications. In particular, we discuss the current level of sophistication in implementation know-how and experimental evaluation, and we note how requirements for real-world partitioners — if used as motivation for research — should affect the evaluation of prospective contributions. We then use two “implicit decisions” in the implementation of the Fiduccia-Mattheyses [20] heuristic to illustrate the difficulty of achieving meaningful experimental evaluation of new algorithmic ideas.

This research was supported by a grant from Cadence Design Systems, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. J. Alpert, “Partitioning Benchmarks for VLSI CAD Community”, Web page, http://vlsicad.cs.ucla.edu/~cheese/benchmarks.html

  2. C. J. Alpert, “The ISPD-98 Circuit Benchmark Suite”, Proc. ACM/IEEE International Symposium on Physical Design, April 98, pp. 80–85. See errata at http://vlsicad.cs.ucla.edu/~cheese/errata.html

  3. C. J. Alpert and L. W. Hagen and A. B. Kahng, “A Hybrid Multilevel/Genetic Approach for Circuit Partitioning”, Proc. IEEE Asia Pacific Conference on Circuits and Systems, 1996, pp. 298–301.

    Google Scholar 

  4. C. J. Alpert, J.-H. Huang and A. B. Kahng, “Multilevel Circuit Partitioning”, ACM/IEEE Design Automation Conference, pp. 530–533. http://vlsicad.cs.ucla.edu/papers/conference/c68.ps

  5. C. J. Alpert and A. B. Kahng, “Recent Directions in Netlist Partitioning: A Survey”, Integration, 19(1995) 1–81.

    MATH  Google Scholar 

  6. R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C. Resende and W. R. Stewart, “Designing and Reporting on Computational Experiments with Heuristic Methods”, technical report (extended version of J. Heuristics paper), June 27, 1995.

    Google Scholar 

  7. F. Brglez, “ACM/SIGDA Design Automation Benchmarks: Catalyst or Anathema?”, IEEE Design and Test, 10(3) (1993), pp. 87–91.

    Google Scholar 

  8. F. Brglez, “Design of Experiments to Evaluate CAD Algorithms: Which Improvements Are Due to Improved Heuristic and Which are Merely Due to Chance?”, technical report CBL-04-Brglez, NCSU Collaborative Benchmarking Laboratory, April 1998.

    Google Scholar 

  9. T. Bui, S. Chaudhuri, T. Leighton and M. Sipser, “Graph Bisection Algorithms with Good Average Behavior”, Combinatorica 7(2), 1987, pp. 171–191.

    Article  MathSciNet  Google Scholar 

  10. A. E. Caldwell, A. B. Kahng and I. L. Markov, manuscript, 1998.

    Google Scholar 

  11. P. K. Chan and M. D. F. Schlag and J. Y. Zien, “Spectral K-Way Ratio-Cut Partitioning and Clustering”, IEEE Transactions on Computer-Aided Design, vol. 13(8), pp. 1088–1096.

    Google Scholar 

  12. J. Cong, H. P. Li, S. K. Lim, T. Shibuya and D. Xu, “Large Scale Circuit Partitioning with Loose/Stable Net Removal and Signal Flow Based Clustering”, Proc. IEEE International Conference on Computer-Aided Design, 1997, pp. 441–446.

    Google Scholar 

  13. J. Cong and S. K. Lim, “Multiway Partitioning with Pairwise Movement”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 1998, to appear.

    Google Scholar 

  14. J. Darnauer and W. Dai, “A Method for Generating Random Circuits and Its Applications to Routability Measurement”, Proc. ACM/SIGDA International Symposium on FPGAs, 1996, pp. 66–72.

    Google Scholar 

  15. A. Dasdan and C. Aykanat, “Two Novel Multiway Circuit Partitioning Algorithms Using Relaxed Locking”, IEEE Transactions on Computer-Aided Design 16(2) (1997), pp. 169–178.

    Article  Google Scholar 

  16. W. Deng, personal communication, July 1998.

    Google Scholar 

  17. A. E. Dunlop and B. W. Kernighan, “A Procedure for Placement of Standard Cell VLSI Circuits”, IEEE Transactions on Computer-Aided Design 4(1) (1985), pp. 92–98

    Article  Google Scholar 

  18. S. Dutt and W. Deng, “VLSI Circuit Partitioning by Cluster-Removal Using Iterative Improvement Techniques”, Proc. IEEE International Conference on Computer-Aided Design, 1996, pp. 194–200

    Google Scholar 

  19. S. Dutt and H. Theny, “Partitioning Using Second-Order Information and Stochastic Gain Function”, Proc. IEEE/ACM International Symposium on Physical Design, 1998, pp. 112–117

    Google Scholar 

  20. C. M. Fiduccia and R. M. Mattheyses, “A Linear Time Heuristic for Improving Network Partitions”, Proc. ACM/IEEE Design Automation Conference, 1982, pp. 175–181.

    Google Scholar 

  21. M. R. Garey and D. S. Johnson, “Computers and Intractability, a Guide to the Theory of NP-completeness”, W. H. Freeman and Company: New York, 1979, pp. 223

    MATH  Google Scholar 

  22. M. Ghose, M. Zubair and C. E. Grosch, “Parallel Partitioning of Sparse Matrices”, Computer Systems Science & Engineering (1995) 1, pp. 33–40.

    Google Scholar 

  23. D. Ghosh, “Synthesis of Equivalence Class Circuit Mutants and Applications to Benchmarking”, summary of presentation at DAC-98 Ph.D. Forum, June 1998.

    Google Scholar 

  24. M. K. Goldberg and M. Burstein, “Heuristic Improvement Technique for Bisection of VLSI Networks”, IEEE Transactions on Computer-Aided Design, 1983, pp. 122–125.

    Google Scholar 

  25. S. Hauck and G. Borriello, “An Evaluation of Bipartitioning Techniques”, IEEE Transactions on Computer-Aided Design 16(8) (1997), pp. 849–866.

    Article  Google Scholar 

  26. L.W. Hagen, D. J. Huang and A. B. Kahng, “On Implementation Choices for Iterative Improvement Partitioning Methods”, Proc. European Design Automation Conference, 1995, pp. 144–149.

    Google Scholar 

  27. B. Hendrickson and R. Leland, “A Multilevel Algorithm for Partitioning Graphs”, draft, 1995.

    Google Scholar 

  28. B. Hendrickson and T. G. Kolda, “Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing”, manuscript, 1998 (extended version of PARA98 workshop proceedings paper).

    Google Scholar 

  29. D. J. Huang and A. B. Kahng, “Partitioning-Based Standard Cell Global Placement with an Exact Objective”, Proc. ACM/IEEE International Symposium on Physical Design, 1997, pp. 18–25. http://vlsicad.cs.ucla.edu/papers/conference/c66.ps

  30. M. Hutton, J. P. Grossman, J. Rose and D. Corneil, “Characterization and Parameterized Random Generation of Digital Circuits”, In Proc. IEEE/ACM Design Automation Conference, 1996, pp. 94–99.

    Google Scholar 

  31. A. B. Kahng, “Futures for Partitioning in Physical design”, Proc. IEEE/ACMInternational Symposium on Physical Design, April 1998, pp. 190–193. http://vlsicad.cs.ucla.edu/papers/conference/c77.ps

  32. G. Karypis and V. Kumar, “Analysis of Multilevel Graph Partitioning”, draft, 1995

    Google Scholar 

  33. G. Karypis and V. Kumar, “Multilevel k-way Partitioning Scheme For Irregular Graphs”, Technical Report 95-064, University of Minnesota, Computer Science Department.

    Google Scholar 

  34. G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel Hypergraph Partitioning: Applications in VLSI Design”, Proc. ACM/IEEE Design Automation Conference, 1997, pp. 526–529. Additional publications and benchmark results for hMetis-1.5 are avilable at http://www-users.cs.umn.edu/~karypis/metis/hmetis/main.html

  35. G. Karypis and V. Kumar, “Multilevel Algorithms for Multi-Constraint Graph Partitioning”, Technical Report 98-019, University of Minnesota, Department of Computer Science.

    Google Scholar 

  36. B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs”, Bell System Tech. Journal 49 (1970), pp. 291–307.

    Google Scholar 

  37. C. Kring and A. R. Newton, “A Cell-Replicating Approach to Mincut-Based Circuit Partitioning”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 1991, pp. 2–5.

    Google Scholar 

  38. B. Krishnamurthy, “An Improved Min-cut Algorithm for Partitioning VLSI Networks”, IEEE Transactions on Computers, vol. C-33, May 1984, pp. 438–446.

    Article  Google Scholar 

  39. B. Landman and R. Russo, “On a Pin Versus Block Relationship for Partitioning of Logic Graphs”, IEEE Transactions on Computers C-20(12) (1971), pp. 1469–1479.

    Article  Google Scholar 

  40. L. T. Liu, M. T. Kuo, S. C. Huang and C. K. Cheng, “A Gradient Method on the Initial Partition of Fiduccia-Mattheyses Algorithm”, Proc. IEEE International Conference on Computer-Aided Design, 1995, pp. 229–234.

    Google Scholar 

  41. T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley-Teubner, 1990.

    Google Scholar 

  42. L. Sanchis, “Multiple-way network partitioning with different cost functions”, IEEE Transactions on Computers, Dec. 1993, vol.42, (no.12):1500–4.

    Article  Google Scholar 

  43. P. R. Suaris and G. Kedem, “Quadrisection: A New Approach to Standard Cell Layout”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 1987, pp. 474–477.

    Google Scholar 

  44. W. Sun and C. Sechen, “Efficient and Effective Placements for Very Large Circuits”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 1993, pp. 170–177.

    Google Scholar 

  45. Y. C. Wei and C. K. Cheng, “Towards Efficient Design by Ratio-cut Partitioning”, Proc. IEEE International Conference on Computer-Aided Design, 1989, pp. 298–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caldwell, A.E., Kahng, A.B., Markov, I.L. (1999). Design and Implementation of the Fiduccia-Mattheyses Heuristic for VLSI Netlist Partitioning. In: Goodrich, M.T., McGeoch, C.C. (eds) Algorithm Engineering and Experimentation. ALENEX 1999. Lecture Notes in Computer Science, vol 1619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48518-X_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-48518-X_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66227-3

  • Online ISBN: 978-3-540-48518-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics