Abstract
We report on experiments on the performance of various geometry kernels for the two-dimensional convex hull problem. We consider how programming techniques and the choice of geometric representation affect performance. In particular we investigate the cost of exact computation. We use C++ as the implementation language. Our experiments are largely based on Cgal.
This work is partially supported by the ESPRIT IV LTR Projects No. 21957 (CGAL) and 28155 (GALIA)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
S. G. Akl. Two remarks on a convex hull algorithm. Inform. Process. Lett., 8(2):108–109, 1979.
S. G. Akl. Corrigendum on convex hull algorithms. Inform. Process. Lett., 10(3):168, 1980.
S. G. Akl and G. T. Toussaint. A fast convex hull algorithm. Inform. Process. Lett., 7(5):219–222, 1978.
G. Alefeld and J. Herzberger. Introduction to Interval Computation. Academic Press, New York, 1983.
D. C. S. Allison and M. T. Noga. Some performance tests of convex hull algorithms. BIT, 24:2–13, 1984.
K. R. Anderson. A reevaluation of an efficient algorithm for determining the convex hull of a finite planar set. Inform. Process. Lett., 7(1):53–55, 1978.
A. M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Inform. Process. Lett., 9(5):216–219, 1979.
B. K. Bhattacharya and G. T. Toussaint. Time-and storage-efficient implementation of an optimal convex hull algorithm. Image Vision Comput., 1:140–144, 1983.
J.-D. Boissonnat and F. Preparata. Robust plane sweep for intersecting segments. Technical Report 3270, INRIA, Sophia-Antipolis, France, September 1997.
K. Briggs. The doubledouble home page. http://epidem13.plantsci.cam.ac.uk/~kbriggs/doubledouble.html.
H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic filters for computational geometry. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 165–174, 1998.
C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily computable separation bound for arithmetic expressions involving square roots. In Proc. of the 8th ACM-SIAM Symp. on Discrete Algorithms, pages 702–709, 1997.
C. Burnikel, J. Könemann, K. Mehlhorn, S. Näher, S. Schirra, and C. Uhrig. Exact geometric computation in LEDA. In Proceedings of the 11th ACM Symposium on Computational Geometry, pages C18–C19, 1995.
C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA class real number. Technical Report MPI-I-96-1-001, Max-Planck-Institut für Informatik, 1996.
A. Bykat. Convex hull of a finite set of points in two dimensions. Inform. Process. Lett., 7:296–298, 1978.
CGAL project. http://www.cs.uu.nl/CGAL
T. M. Y. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 10–19, 1995.
K. Clarkson. A short, complete planar convex hull code. http://cm.bell-labs.com/who/clarkson/2dch.c.
T. J. Dekker. A floating-point technique for extending the available precision. Numerische Mathematik, 18:224–242, 1971.
F. Dévai and T. Szendrényi. Comments on convex hull of a finite set of points in two dimensions. Inform. Process. Lett., 9:141–142, 1979.
W. F. Eddy. A new convex hull algorithm for planar sets. ACM Trans. Math. Softw., 3:398–403 and 411–412, 1977.
H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1986.
S. Fortune and C. Van Wyk. Static analysis yields efficient exact integer arithmetic for computational geometry. ACM Transactions on Graphics, 15(3):223–248, 1996.
A. Fournier. Comments on convex hull of a finite set of points in two dimensions. Inform. Process. Lett., 8:173, 1979.
R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Inform. Process. Lett., 1:132–133, 1972.
T. Granlund. GNU MP, The GNU Multiple Precision Arithmetic Library, 2.0.2 edition, June 1996.
P. J. Green and B. W. Silverman. Constructing the convex hull of a set of points in the plane. Comput. J., 22:262–266, 1979.
C. C. Handley. Efficient planar convex hull algorithm. Image Vision Comput., 3:29–35, 1985.
S. Hertel. An almost trivial convex hull algorithm for a presorted point set in the plane. Report A83/08, Fachber. Inform., Univ. Saarlandes, Saarbrücken, West Germany, 1983.
R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane. Inform. Process. Lett., 2:18–21, 1973.
M. Karasick, D. Lieber, and L.R. Nackman. Efficient Delaunay triangulation using rational arithmetic. ACM Transactions on Graphics, 10(1):71–91, 1991.
D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J. Comput., 15:287–299, 1986.
J. Koplowitz and D. Jouppi. A more efficient convex hull algorithm. Inform. Process. Lett., 7:56–57, 1978.
G. Liotta, F. P. Preparata, and R. Tamassia. Robust proximity queries: an illustration of degree-driven algorithm design. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 156–165, 1997.
S. B. Lippman and J. Lajoie. C++ primer. Addison-Wesley, Reading, MA, 3rd ed., 1998.
M. M. McQueen and G. T. Toussaint. On the ultimate convex hull algorithm in practice. Pattern Recogn. Lett., 3:29–34, 1985.
K. Mehlhorn. Multi-dimensional Searching and Computational Geometry, volume 3 of Data Structures and Algorithms. Springer-Verlag, Heidelberg, Germany, 1984.
K. Mehlhorn and S. Näher. LEDA, a platform for combinatorial and geometric computing. Communications of the ACM, 38:96–102, 1995.
K. Mehlhorn, S. Näher, M. Seel, and C. Uhrig. The LEDA User manual, 3.7 edition, 1998. see http://www.mpi-sb.mpg.de/LEDA/leda.html.
R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.
M. H. Overmars and J. van Leeuwen. Further comments on Bykat’s convex hull algorithm. Inform. Process. Lett., 10:209–212, 1980.
D. M. Priest. On Properties of Floating-Point Arithmetic: Numerical Stability and the Cost of Accurate Computations. PhD thesis, Department of Mathematics, University of California at Berkeley, 1992.
J. R. Shewchuk. C code for the 2d and 3d orientation and incircle tests, and for arbitrary precision floating-point addition and multiplication. Available from http://www.cs.cmu.edu/~quake/robust.html.
J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Technical Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon University, 1996.
G. T. Toussaint. A historical note on convex hull finding algorithms. Pattern Recogn. Lett., 3:21–28, 1985.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Schirra, S. (1999). A Case Study on the Cost of Geometric Computing. In: Goodrich, M.T., McGeoch, C.C. (eds) Algorithm Engineering and Experimentation. ALENEX 1999. Lecture Notes in Computer Science, vol 1619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48518-X_10
Download citation
DOI: https://doi.org/10.1007/3-540-48518-X_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66227-3
Online ISBN: 978-3-540-48518-6
eBook Packages: Springer Book Archive