[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Case Study on the Cost of Geometric Computing

  • Chapter
  • First Online:
Algorithm Engineering and Experimentation (ALENEX 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1619))

Included in the following conference series:

Abstract

We report on experiments on the performance of various geometry kernels for the two-dimensional convex hull problem. We consider how programming techniques and the choice of geometric representation affect performance. In particular we investigate the cost of exact computation. We use C++ as the implementation language. Our experiments are largely based on Cgal.

This work is partially supported by the ESPRIT IV LTR Projects No. 21957 (CGAL) and 28155 (GALIA)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. G. Akl. Two remarks on a convex hull algorithm. Inform. Process. Lett., 8(2):108–109, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. G. Akl. Corrigendum on convex hull algorithms. Inform. Process. Lett., 10(3):168, 1980.

    Article  MathSciNet  Google Scholar 

  3. S. G. Akl and G. T. Toussaint. A fast convex hull algorithm. Inform. Process. Lett., 7(5):219–222, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Alefeld and J. Herzberger. Introduction to Interval Computation. Academic Press, New York, 1983.

    Google Scholar 

  5. D. C. S. Allison and M. T. Noga. Some performance tests of convex hull algorithms. BIT, 24:2–13, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. R. Anderson. A reevaluation of an efficient algorithm for determining the convex hull of a finite planar set. Inform. Process. Lett., 7(1):53–55, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Inform. Process. Lett., 9(5):216–219, 1979.

    Article  MATH  Google Scholar 

  8. B. K. Bhattacharya and G. T. Toussaint. Time-and storage-efficient implementation of an optimal convex hull algorithm. Image Vision Comput., 1:140–144, 1983.

    Article  Google Scholar 

  9. J.-D. Boissonnat and F. Preparata. Robust plane sweep for intersecting segments. Technical Report 3270, INRIA, Sophia-Antipolis, France, September 1997.

    Google Scholar 

  10. K. Briggs. The doubledouble home page. http://epidem13.plantsci.cam.ac.uk/~kbriggs/doubledouble.html.

  11. H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic filters for computational geometry. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 165–174, 1998.

    Google Scholar 

  12. C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily computable separation bound for arithmetic expressions involving square roots. In Proc. of the 8th ACM-SIAM Symp. on Discrete Algorithms, pages 702–709, 1997.

    Google Scholar 

  13. C. Burnikel, J. Könemann, K. Mehlhorn, S. Näher, S. Schirra, and C. Uhrig. Exact geometric computation in LEDA. In Proceedings of the 11th ACM Symposium on Computational Geometry, pages C18–C19, 1995.

    Google Scholar 

  14. C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA class real number. Technical Report MPI-I-96-1-001, Max-Planck-Institut für Informatik, 1996.

    Google Scholar 

  15. A. Bykat. Convex hull of a finite set of points in two dimensions. Inform. Process. Lett., 7:296–298, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  16. CGAL project. http://www.cs.uu.nl/CGAL

  17. T. M. Y. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 10–19, 1995.

    Google Scholar 

  18. K. Clarkson. A short, complete planar convex hull code. http://cm.bell-labs.com/who/clarkson/2dch.c.

  19. T. J. Dekker. A floating-point technique for extending the available precision. Numerische Mathematik, 18:224–242, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Dévai and T. Szendrényi. Comments on convex hull of a finite set of points in two dimensions. Inform. Process. Lett., 9:141–142, 1979.

    Article  MATH  Google Scholar 

  21. W. F. Eddy. A new convex hull algorithm for planar sets. ACM Trans. Math. Softw., 3:398–403 and 411–412, 1977.

    Article  MATH  Google Scholar 

  22. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1986.

    Google Scholar 

  23. S. Fortune and C. Van Wyk. Static analysis yields efficient exact integer arithmetic for computational geometry. ACM Transactions on Graphics, 15(3):223–248, 1996.

    Article  Google Scholar 

  24. A. Fournier. Comments on convex hull of a finite set of points in two dimensions. Inform. Process. Lett., 8:173, 1979.

    Article  MathSciNet  Google Scholar 

  25. R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Inform. Process. Lett., 1:132–133, 1972.

    Article  MATH  Google Scholar 

  26. T. Granlund. GNU MP, The GNU Multiple Precision Arithmetic Library, 2.0.2 edition, June 1996.

    Google Scholar 

  27. P. J. Green and B. W. Silverman. Constructing the convex hull of a set of points in the plane. Comput. J., 22:262–266, 1979.

    Article  MATH  Google Scholar 

  28. C. C. Handley. Efficient planar convex hull algorithm. Image Vision Comput., 3:29–35, 1985.

    Article  Google Scholar 

  29. S. Hertel. An almost trivial convex hull algorithm for a presorted point set in the plane. Report A83/08, Fachber. Inform., Univ. Saarlandes, Saarbrücken, West Germany, 1983.

    Google Scholar 

  30. R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane. Inform. Process. Lett., 2:18–21, 1973.

    Article  MATH  Google Scholar 

  31. M. Karasick, D. Lieber, and L.R. Nackman. Efficient Delaunay triangulation using rational arithmetic. ACM Transactions on Graphics, 10(1):71–91, 1991.

    Article  Google Scholar 

  32. D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J. Comput., 15:287–299, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Koplowitz and D. Jouppi. A more efficient convex hull algorithm. Inform. Process. Lett., 7:56–57, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  34. G. Liotta, F. P. Preparata, and R. Tamassia. Robust proximity queries: an illustration of degree-driven algorithm design. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 156–165, 1997.

    Google Scholar 

  35. S. B. Lippman and J. Lajoie. C++ primer. Addison-Wesley, Reading, MA, 3rd ed., 1998.

    Google Scholar 

  36. M. M. McQueen and G. T. Toussaint. On the ultimate convex hull algorithm in practice. Pattern Recogn. Lett., 3:29–34, 1985.

    Article  Google Scholar 

  37. K. Mehlhorn. Multi-dimensional Searching and Computational Geometry, volume 3 of Data Structures and Algorithms. Springer-Verlag, Heidelberg, Germany, 1984.

    MATH  Google Scholar 

  38. K. Mehlhorn and S. Näher. LEDA, a platform for combinatorial and geometric computing. Communications of the ACM, 38:96–102, 1995.

    Article  Google Scholar 

  39. K. Mehlhorn, S. Näher, M. Seel, and C. Uhrig. The LEDA User manual, 3.7 edition, 1998. see http://www.mpi-sb.mpg.de/LEDA/leda.html.

  40. R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.

    MATH  Google Scholar 

  41. M. H. Overmars and J. van Leeuwen. Further comments on Bykat’s convex hull algorithm. Inform. Process. Lett., 10:209–212, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  42. D. M. Priest. On Properties of Floating-Point Arithmetic: Numerical Stability and the Cost of Accurate Computations. PhD thesis, Department of Mathematics, University of California at Berkeley, 1992.

    Google Scholar 

  43. J. R. Shewchuk. C code for the 2d and 3d orientation and incircle tests, and for arbitrary precision floating-point addition and multiplication. Available from http://www.cs.cmu.edu/~quake/robust.html.

  44. J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Technical Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon University, 1996.

    Google Scholar 

  45. G. T. Toussaint. A historical note on convex hull finding algorithms. Pattern Recogn. Lett., 3:21–28, 1985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schirra, S. (1999). A Case Study on the Cost of Geometric Computing. In: Goodrich, M.T., McGeoch, C.C. (eds) Algorithm Engineering and Experimentation. ALENEX 1999. Lecture Notes in Computer Science, vol 1619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48518-X_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-48518-X_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66227-3

  • Online ISBN: 978-3-540-48518-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics