[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Random Cayley Graphs with O(log|G|) Generators Are Expanders

  • Conference paper
  • First Online:
Algorithms - ESA’ 99 (ESA 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1643))

Included in the following conference series:

  • 743 Accesses

Abstract

Let G be a finite group. Choose a set S of size k uniformly from G and consider a lazy random walk on the corresponding Cayley graph Γ (G,S). We show that for almost all choices of S given k = 2alog2 |G|, a > 1, we have Reλ1 ≤ 1-1/2a. A similar but weaker result was obtained earlier by Alon and Roichman (see [4]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Aldous, P. Diaconis: Shuffling cards and stopping times, Amer. Math. Monthly, 93 1986, pp 333–348.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Aldous, P. Diaconis: Strong uniform times and finite random walks, Adv. Appl. Math., 8 1987, pp 69–97.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Aldous, J. Fill: Reversible Markov Chains and RandomWalks on Graphs monograph in preparation 1996.

    Google Scholar 

  4. N. Alon, Y. Roichman: Random Cayley graphs and expanders, Rand. Str. Alg., 5 1994, pp 271–284.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Babai: Local expansion of vertex-transitive graphs and randomgeneartion in finite groups, in Proc 23rd ACMSTOC 1991, pp 164–174.

    Google Scholar 

  6. L. Babai: Automorphismgroups, isomorphism, reconstruction, in Handbookof Combinatorics (R. L. Grahamet al., eds.), Elsevier 1996.

    Google Scholar 

  7. P. Diaconis: Group Representations in Probability and Statistics, IMS, Hayward, California 1988.

    MATH  Google Scholar 

  8. C. Dou, M. Hildebrand: Enumeration and randomrandomwalks on finite groups, Ann. Prob., 24 1996, pp 987–1000.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Erdos, R. R. Hall: Probabilistic methods in group theory. II, Houston J. Math., 2 1976, pp 173–180.

    MathSciNet  Google Scholar 

  10. P. Erdös, A. Rényi: Probabilistic methods in group theory, Jour. Analyse Mathématique, 14 1965, pp 127–138.

    Article  MATH  Google Scholar 

  11. I. Pak: Random walks on groups: strong uniform time approach, Ph.D. Thesis, Harvard U. 1997.

    Google Scholar 

  12. I. Pak: Random walks on finite groups with few random generators, Electronic J. Prob., 4 1999, pp 1–11.

    MathSciNet  Google Scholar 

  13. Y. Roichman: On random random walks, Ann. Prob., 24 1996, pp 1001–1011.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Wilson: Random random walks on 2d , Prob. Th. Rel. Fields, 108 1997, pp 441–457.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pak, I. (1999). Random Cayley Graphs with O(log|G|) Generators Are Expanders. In: Nešetřil, J. (eds) Algorithms - ESA’ 99. ESA 1999. Lecture Notes in Computer Science, vol 1643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48481-7_45

Download citation

  • DOI: https://doi.org/10.1007/3-540-48481-7_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66251-8

  • Online ISBN: 978-3-540-48481-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics