[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Complexity of Orthogonal Compaction

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1663))

Included in the following conference series:

Abstract

We consider three closely related optimization problems, arising from the graph drawing and the VLSI research areas, and conjectured to be NP-hard, and we prove that, in fact, they are NP-complete. Starting from an orthogonal representation of a graph, i.e., a description of the shape of the edges that does not specify segment lengths or vertex positions, the three problems consist of providing an orthogonal grid drawing of it, while minimizing the area, the total edge length, or the maximum edge length, respectively.

Research supported in part by the CNR Project “Geometria Computazionale Robusta con Applicazioni alla Grafica ed al CAD”, and by the ESPRIT LTR Project 20244 (ALCOM-IT)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. In F. Dehne, A. Rau-Chaplin, J.-R. Sack, and R. Tamassia, editors, Proc. 5th Workshop Algorithms Data Struct., volume 1272 of LNCS, pages 331–344. Springer-Verlag, 1997.

    Google Scholar 

  2. S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and L. Vismara. Optimal compaction of orthogonal representations. In CGC Workshop on Geometric Computing, 1998.

    Google Scholar 

  3. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.

    MATH  Google Scholar 

  4. D. Dolev and H. Trickey. On linear area embedding of planar graphs. Report cs-81-876, Stanford Univ., 1981.

    Google Scholar 

  5. U. Föβmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD’ 95), volume 1027 of LNCS, pages 254–266. Springer-Verlag, 1996.

    Chapter  Google Scholar 

  6. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

    MATH  Google Scholar 

  7. F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1972.

    Google Scholar 

  8. F. Hoffmann and K. Kriegel. Embedding rectilinear graphs in linear time. Inform. Process. Lett., 29:75–79, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. Technical Report MPI-I 98-1-013, Max Planck Institut für Informatik, Saarbrücken, Germany, 1998.

    Google Scholar 

  10. G. W. Klau and P. Mutzel. Optimal compaction of orthogonal grid drawings. In G. Cornuejols, R. E. Burkard, and G. J. Woeginger, editors, Integer Progr. Comb. Opt. (Proc. IPCO’ 99), volume 1610 of LNCS, Springer-Verlag, to appear.

    Google Scholar 

  11. T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley-Teubner, 1990.

    Google Scholar 

  12. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.

    MATH  Google Scholar 

  13. M. Patrignani. On the complexity of orthogonal compaction. Technical Report RT-DIA-39-99, Dipartimento di Informatica e Automazione, Universit.a di Roma Tre, Rome, Italy, Jan. 1999.

    Google Scholar 

  14. R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421–444, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Vijayan and A. Wigderson. Rectilinear graphs and their embeddings. SIAM J. Comput., 14:355–372, 1985.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Patrignani, M. (1999). On the Complexity of Orthogonal Compaction. In: Dehne, F., Sack, JR., Gupta, A., Tamassia, R. (eds) Algorithms and Data Structures. WADS 1999. Lecture Notes in Computer Science, vol 1663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48447-7_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-48447-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66279-2

  • Online ISBN: 978-3-540-48447-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics