Abstract
We address the issue of regularizing Osher and Rudin’s shock filter, used for image deblurring, in order to allow processes that are more robust against noise. Previous solutions to the problem suggested adding some sort of diffusion term to the shock equation. We analyze and prove some properties of coupled shock and diffusion processes. Finally we propose an original solution of adding a complex diffusion term to the shock equation. This new term is used to smooth out noise and indicate inflection points simultaneously. The imaginary value, which is an approximated smoothed second derivative scaled by time, is used to control the process. This results in a robust deblurring process that performs well also on noisy signals.
Chapter PDF
Similar content being viewed by others
References
L. Alvarez, L. Mazorra, “Signal and image restoration using shock filters and anisotropic diffusion”, SIAM J. Numer. Anal. Vol. 31, No. 2, pp. 590–605, 1994.
F. Barbaresco, “Calcul des variations et analyse spectrale: equations de Fourier et de Burgers pour modeles autoregressifs regularises“, Traitement du Signal, vol. 17, No. 5/6, 2000.
O. Coulon, S.R. Arridge, “Dual echo MR image processing using multi-spectral probabilistic diffusion coupled with shock filters”, MIUA’2000, British Conference on Medical Image Understanding and Analysis, London, United-Kingdom, 2000.
G. Gilboa, Y.Y. Zeevi, N. Sochen, “Complex diffusion processes for image filtering”, Michael Kerckhove (Ed.): Scale-Space 2001, LNCS 2106, pp. 299–307, Springer-Verlag 2001.
G. Gilboa, N. Sochen, Y.Y. Zeevi, “Image enhancement segmentation and de-noising by time dependent nonlinear diffusion processes”, ICIP-’01, Thessaloniki, Greece, October 2001.
G. Gilboa, N. Sochen, Y.Y. Zeevi, “Anisotropic selective inverse diffusion for signal enhancement in the presence of noise”, Proc. IEEE ICASSP-2000, Istanbul, Turkey, vol. I, pp. 211–224, June 2000.
G. Gilboa, N. Sochen, Y.Y. Zeevi, “Complex diffusion for image filtering”, CCIT Technical Report, Technion-IIT, Haifa, Israel-to appear.
F. Guichard, J-M. Morel, “A note on two classical shock filters and their asymptotics”, M. Kerckhove (Ed.): Scale-Space 2001, LNCS 2106, pp. 75–84, Springer-Verlag 2001.
M. Kerckhove (Ed.), “Scale-Space and morphology in computer-vision”, Scale-Space 2001, LNCS 2106, Springer-Verlag 2001.
P. Kornprobst, R. Deriche, G. Aubert, “Image coupling, restoration and enhancement via PDE’s”, Proc. Int. Conf. on Image Processing 1997, pp. 458–461, Santa-Barbara (USA), 1997.
S.J. Osher and L. I. Rudin, “Feature-oriented image enhancement using shock filters”, SIAM J. Numer. Anal. 27, pp. 919–940, 1990.
N. Rougon, F. Preteux, “Controlled anisotropic diffusion”, Proc. SPIE Conf. on Nonlinear Image Processing VI-IS&T / SPIE Symp. on Electronic Imaging, Science and Technology’ 95, San Jose, CA, Vol. 2424, 1995, pp. 329–340.
P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion”, IEEE Trans. PAMI, vol. PAMI-12,no. 7, pp. 629–639, 1990.
B M ter Haar Romeny Ed., “Geometry driven diffusion in computer vision”, Kluwer Academic Publishers, 1994.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gilboa, G., Sochen, N.A., Zeevi, Y.Y. (2002). Regularized Shock Filters and Complex Diffusion. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds) Computer Vision — ECCV 2002. ECCV 2002. Lecture Notes in Computer Science, vol 2350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47969-4_27
Download citation
DOI: https://doi.org/10.1007/3-540-47969-4_27
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43745-1
Online ISBN: 978-3-540-47969-7
eBook Packages: Springer Book Archive