[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Coordinatewise Domain Scaling Algorithm for M-convex Function Minimization

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2337))

Abstract

We present a polynomial time domain scaling algorithm for the minimization of an M-convex function. M-convex functions are non-linear discrete functions with (poly)matroid structures, which are being recognized to play a fundamental role in tractable cases of discrete optimization. The novel idea of the algorithm is to use an individual scaling factor for each coordinate.

This work is supported by a Grant-in-Aid of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cunningham, W. H. and Frank, A.: A Primal-dual Algorithm for Submodular Flows. Math. Oper. Res. 10 (1985) 251–262

    Article  MathSciNet  MATH  Google Scholar 

  2. Danilov, V., Koshevoy, G., Murota, K.: Discrete Convexity and Equilibria in Economies with Indivisible Goods and Money. Math. Social Sci. 41 (2001) 251–273

    Article  MathSciNet  MATH  Google Scholar 

  3. Dress, A. W. M., Wenzel, W.: Valuated Matroid: A New Look at the Greedy Algorithm. Appl. Math. Lett. 3 (1990) 33–35

    Article  MathSciNet  MATH  Google Scholar 

  4. Dress, A. W. M., Wenzel, W.: Valuated Matroids. Adv. Math. 93 (1992) 214–250

    Article  MathSciNet  MATH  Google Scholar 

  5. Edmonds, J.: Submodular Functions, Matroids and Certain Polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.): Combinatorial Structures and Their Applications. Gordon and Breach, New York (1970) 69–87

    Google Scholar 

  6. Edmonds, J., Giles, R.: A Min-max Relation for Submodular Functions on Graphs. Ann. Discrete Math. 1 (1977) 185–204

    Article  MathSciNet  Google Scholar 

  7. Frank, A.: Generalized Polymatroids. In: Hajnal, A., Lovász, L., Sós, V. T. (eds.): Finite and Infinite Sets, I. North-Holland, Amsterdam (1984) 285–294

    Google Scholar 

  8. Frank, A., Tardos, É.: Generalized Polymatroids and Submodular Flows. Math. Program. 42 (1988) 489–563

    Article  MathSciNet  MATH  Google Scholar 

  9. Fujishige, S.: Lexicographically Optimal Base of a Polymatroid with Respect to a Weight Vector. Math. Oper. Res. 5 (1980) 186–196

    Article  MathSciNet  MATH  Google Scholar 

  10. Fujishige, S.: Submodular Functions and Optimization. Annals of Discrete Mathematics 47, North-Holland, Amsterdam (1991)

    Google Scholar 

  11. Groenevelt, H.: Two Algorithms for Maximizing a Separable Concave Function over a Polymatroid Feasible Region. European J. Oper. Res. 54 (1991) 227–236

    Article  MATH  Google Scholar 

  12. Hochbaum, D. S.: Lower and Upper Bounds for the Allocation Problem and Other Nonlinear Optimization Problems. Math. Oper. Res. 19 (1994) 390–409

    Article  MathSciNet  MATH  Google Scholar 

  13. Iwata, S.: A Fully Combinatorial Algorithm for Submodular Function Minimization. J. Combin. Theory Ser. B (to appear)

    Google Scholar 

  14. Iwata, S., Shigeno, M.: Conjugate Scaling Algorithm for Fenchel-type Duality in Discrete Convex Optimization. SIAM J. Optim. (to appear)

    Google Scholar 

  15. Iwata, S., Fleischer, L., Fujishige, S.: A Combinatorial Strongly Polynomial Algorithm for Minimizing Submodular Functions. J. ACM 48 (2001) 761–777

    Article  MathSciNet  MATH  Google Scholar 

  16. Lovász, L.: Submodular Functions and Convexity. In: Bachem, A., Grötschel, M., Korte, B. (eds.): Mathematical Programming — The State of the Art. Springer-Verlag, Berlin (1983) 235–257

    Chapter  Google Scholar 

  17. Moriguchi, S., Murota, K., Shioura, A.: Minimization of an M-convex Function with a Scaling Technique (in Japanese). IPSJ SIG Notes 2001-AL-76 (2001) 27–34

    Google Scholar 

  18. Moriguchi, S., Murota, K., Shioura, A.: Scaling Algorithms for M-convex Function Minimization. IEICE Trans. Fund. (to appear)

    Google Scholar 

  19. Murota, K.: Convexity and Steinitz’s Exchange Property. Adv. Math. 124 (1996) 272–311

    Article  MathSciNet  MATH  Google Scholar 

  20. Murota, K.: Discrete Convex Analysis. Math. Program. 83 (1998) 313–371

    MathSciNet  MATH  Google Scholar 

  21. Murota, K.: Submodular Flow Problem with a Nonseparable Cost Function. Combinatorica 19 (1999) 87–109

    Article  MathSciNet  MATH  Google Scholar 

  22. Murota, K.: Matrices and Matroids for Systems Analysis. Springer-Verlag, Berlin (2000)

    MATH  Google Scholar 

  23. Murota, K.: Discrete Convex Analysis (in Japanese). Kyoritsu Publ. Co., Tokyo (2001)

    Google Scholar 

  24. Murota, K., Shioura, A.: Quasi M-convex and L-convex functions: Quasi-convexity in discrete optimization. Discrete Appl. Math. (to appear)

    Google Scholar 

  25. Murota, K., Tamura, A.: New Characterizations of M-convex Functions and Their Applications to Economic Equilibrium Models with Indivisibilities. Discrete Appl. Math. (to appear)

    Google Scholar 

  26. Murota, K., Tamura, A.: Application of M-convex Submodular Flow Problem to Mathematical Economics. In: Eades, P., Takaoka, T. (eds.): Proceedings of 12th International Symposium on Algorithms and Computation, Lecture Notes in Computer Science, Vol. 2223. Springer-Verlag, Berlin Heidelberg New York (2001) 14–25

    Chapter  Google Scholar 

  27. Rockafellar, R. T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  28. Schrijver, A.: A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time. J. Combin. Theory Ser. B 80 (2000) 346–355

    Article  MathSciNet  MATH  Google Scholar 

  29. Shioura, A.: Minimization of an M-convex Function. Discrete Appl. Math. 84 (1998) 215–220

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tamura, A. (2002). A Coordinatewise Domain Scaling Algorithm for M-convex Function Minimization. In: Cook, W.J., Schulz, A.S. (eds) Integer Programming and Combinatorial Optimization. IPCO 2002. Lecture Notes in Computer Science, vol 2337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47867-1_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-47867-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43676-8

  • Online ISBN: 978-3-540-47867-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics