[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Maintaining Class Membership Information

  • Conference paper
  • First Online:
Advances in Object-Oriented Information Systems (OOIS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2426))

Included in the following conference series:

Abstract

Galois lattices (or concept lattices), which are lattices built on a binary relation, are now used in many fields, such as Data Mining and hierarchy organization, but may be of exponential size. In this paper, we propose a decomposition of a Galois sub-hierarchy which is of small size but contains useful inheritance information. We show how to efficiently maintain this information when an element is added to or removed from the relation, using a dynamic domination table which describes the underlying graph with which we encode the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berry, A., Bordat, J.-P.: Orthotreillis et séparabilité dans un graphe non-orienté. Mathématiques, Informatique et Sciences Humaines, 146 (1999) 5–17.

    MathSciNet  Google Scholar 

  2. Berry, A., Sigayret, A.: Representing a concept lattice by a graph. Workshop on Discrete Mathematics for Data Mining, Proc. 2nd SIAM Workshop on Data Mining, Arlington (VA), April 11–13, (2002).

    Google Scholar 

  3. Chen, J.-B., Lee, S. C.: Generation and Reorganization of Subtype Hierarchies. Journal of Object Oriented Programming, 8(8) (1996).

    Google Scholar 

  4. Godin, R.: Complexité de Structures de Treillis. Annales des Sciences Mathématiques du Québec, 13(1) (1989) 19–38.

    MATH  MathSciNet  Google Scholar 

  5. Godin, R., Mili, H.: Building and Maintaining Analysis-Level Class Hierarchies Using Galois Lattices. Proceedings of ACM OOPSLA’93, Special issue of Sigplan Notice, 28(10) (1993) 394–410.

    Google Scholar 

  6. Godin, R., Missaoui, R., April, A.: Experimental Comparison of Navigation in a Galois Lattice with Conventional Information Retrieval Methods. International Journal of Man-Machine Studies, 38 (1993) 747–767.

    Article  Google Scholar 

  7. Godin, R., Saunders, E., Gecsei, J.: Lattice Model of Browsable Data Spaces. Information Sciences, 40 (1986) 89–116.

    Article  MATH  Google Scholar 

  8. Hager, M.: On Halin-Lattices in Graphs. Discrete Mathematics, 47 (1983) 235–246.

    Article  MATH  MathSciNet  Google Scholar 

  9. Halin, R.: Lattices of cuts in graphs. Abh. Math. Sem. Univ. Hamburg, 61 (1991) 217–230.

    Article  MATH  MathSciNet  Google Scholar 

  10. Huchard, M., Dicky, H., Leblanc, H.: Galois lattice as a framework to specify building class hierarchies algorithms. Theoretical Informatics and Applications, 34 (2000) 521–548.

    Article  MATH  MathSciNet  Google Scholar 

  11. Pfaltz, J. L., Taylor, C. M.: Scientific Knowledge Discovery through Iterative Transformation of Concept Lattices. Workshop on Discrete Mathematics for Data Mining, Proc. 2nd SIAM Workshop on Data Mining, Arlington (VA), April 11–13, (2002).

    Google Scholar 

  12. Polat, N.: Treillis de séparation des graphes. Can. J. Math., vol. XXVIII No 4 (1976) 725–752.

    MathSciNet  Google Scholar 

  13. Valtchef, P., Missaoui, R., Godin, R.: A Framework for Incremental Generation of Frequent Closed Item Sets. Workshop on Discrete Mathematics for Data Mining, Proc. 2nd SIAM Workshop on Data Mining, Arlington (VA), April 11–13, (2002).

    Google Scholar 

  14. Yahia, A., Lakhal, L., Bordat, J.-P.: Designing Class Hierarchies of Object Database Schemes. Proceedings 13e journées Bases de Données avancées (BDA’97), (1997).

    Google Scholar 

  15. Zaki, M. J., Parthasarathy, S., Ogihara M., Li, W.: New Algorithms for Fast Discovery of Association Rules. Proceedings of 3rd Int. Conf. on Database Systems for Advanced Applications, April, (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berry, A., Sigayret, A. (2002). Maintaining Class Membership Information. In: Bruel, JM., Bellahsene, Z. (eds) Advances in Object-Oriented Information Systems. OOIS 2002. Lecture Notes in Computer Science, vol 2426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46105-1_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-46105-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44088-8

  • Online ISBN: 978-3-540-46105-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics