Abstract
When considering noisy fitness functions for some CPU-time consuming applications, a trade-off problem arise: how to reduce the influence of the noise while not increasing too much computation time. In this paper, we propose and experiment some new strategies based on an exploitation of historical information on the algorithm evolution, and a non-generational evolutionary algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baker, J.E.: “Reducing bias and inefficiency in the selection algorithm” in Genetic Algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, 14–21, 1987.
Korne, D.W., Knowles, J.D., Oates, M.J.: “The Pareto Envelope-Based Selection Algorithm for Multiobjective Optimization”, in Proceedings of Parallel Problem Solving from Nature 6, (pp 571–580), 2000.
Fitzpatrick, J.M., Grefenstette, J.J.: “Genetic Algorithms in noisy environments.” in P. Langley, editor, Machine Learning, pages 101–120, (Kluwer, Dordrecht, 1988).
Goldberg, D.E., Richardson, J.: “Genetic algorithms with sharing for multimodal function optimization.” in J.J. Grefenstette, editor, Genetic Algorithms and their Applications, (pp 41–49), Lawrence Erlbaum Associates, Hillsdale, New-Jersey, 1987.
Hammel U., Bäck, T.: “Evolution Strategies on Noisy Functions. How to improve Convergence Properties.” in Y. Davidor, R. Männer, and H.P. Schwefel, editors, Parallel Problem Solving from Nature 3, pages 159–168, (Springer Verlag, Heidelberg, 1994).
Lévy Véhel, J. and Lutton, E.: ”Evolutionary signal enhancement based on Hölder regularity analysis”, in Proceedings of EVOIASP2001Workshop, Como Lake, Italy, Springer Verlag, LNCS 2038, 2001.
Leblanc, B., Lutton, E., Braunschweig, B., Toulhoat, H.: “Improving molecular simulation: a meta optimisation of Monte Carlo parameters”, in Proceeding of CEC2001, Congress on Evolutionary Computation, 2001.
Leblanc, B., Lutton, E., Braunschweig, B., Toulhoat, H.: ”History and never ending life in evolutionary computation: a molecular simulation application”, INRIA Research Report, to appear, 2001.
Miller, B.L.: “Noise, sampling, and genetic algorithms”, Doctoral dissertation, Illigal Report No. 97001, 1997.
Sano, Y., Kita, H.: “Optimization of Noisy Fitness Functions by Means of Genetic Algorithms Using History of Search”, in Proceedings of Parallel Problem Solving from Nature 6, (pp 571–580), 2000.
Zitzler, E. and Thiele L.: “Multiobjective Evolutionary Algorithm: A Comparative Case Study and the Strength Pareto Approach ”, in IEEE Transactions on Evolutionary Computation, 2(4), (pp 257–272), 1999.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-VerlagBerlin Heidelberg
About this paper
Cite this paper
Leblanc, B., Lutton, E., Braunschweig, B., Toulhoat, H. (2002). History and Immortality in Evolutionary Computation. In: Collet, P., Fonlupt, C., Hao, JK., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2001. Lecture Notes in Computer Science, vol 2310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46033-0_11
Download citation
DOI: https://doi.org/10.1007/3-540-46033-0_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43544-0
Online ISBN: 978-3-540-46033-6
eBook Packages: Springer Book Archive