Abstract
We present a modification of Bodlaender’s linear time algorithm that, for constant k, determines whether an input graph G = (V,E) has treewidth k and, if so, constructs a tree decomposition of G of width at most k. Our algorithm has the following additional feature: if G has treewidth greater than k then a subgraph G′ of G of treewidth greater than k is returned along with a tree decomposition of G′ of width at most 2k. A consequence is that the fundamental disjoint rooted paths problem can now be solved in O(n2) time. This is the primary motivation for this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. of Algorithms 12 (1991) 308–340
Arnborg, S., Courcelle, B., Proskurowski, A., Seese, D.: An algebraic theory of graph reduction. J. Assoc. Comput. Mach. 40 (1993) 1134–1164
Arnborg, S., Corneil, D. G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebra Discrete Methods 8 (1987) 277–284 149
Bodlaender, H. L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25:6 (1996) 1305–1317 149, 150, 154
Bodlaender, H. L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209:1-2 (1998) 1–45 148
Bodlaender, H. L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21:2 (1996) 358–402 151
Lagergren, J.: Efficient parallel algorithms for graphs of bounded tree-width. J. Algorithms 20 (1996) 20–44 149
Reed, B.: Finding approximate separators and computing treewidth quickly. Proc. 24th STOC (1992) 221–228 149
Reed, B.: Manuscript (1992) 149
Robertson, N., Seymour P. D.: Graph Minors II. Algorithmic aspects of tree-width. J. Algorithms 7 (1986) 309–322 148, 149
Robertson, N., Seymour P. D.: Graph Minors VI. Disjoint paths across a disk. J. Combin. Theory Ser. B 45 (1986) 115–138 149
Robertson, N., Seymour, P.D.: Graph Minors XIII. The disjoint path problem. J. Combin. Theory Ser. B 63 (1995) 65–110 149
Robertson, N., Seymour P. D.: Graph Minors VII. Disjoint paths on a surface. J. Combin. Theory Ser. B ?? (1988) 212–254 149
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Perković, L., Reed, B. (1999). An Improved Algorithm for Finding Tree Decompositions of Small Width. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds) Graph-Theoretic Concepts in Computer Science. WG 1999. Lecture Notes in Computer Science, vol 1665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46784-X_15
Download citation
DOI: https://doi.org/10.1007/3-540-46784-X_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66731-5
Online ISBN: 978-3-540-46784-7
eBook Packages: Springer Book Archive