[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Improved Algorithm for Finding Tree Decompositions of Small Width

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1665))

Included in the following conference series:

Abstract

We present a modification of Bodlaender’s linear time algorithm that, for constant k, determines whether an input graph G = (V,E) has treewidth k and, if so, constructs a tree decomposition of G of width at most k. Our algorithm has the following additional feature: if G has treewidth greater than k then a subgraph G′ of G of treewidth greater than k is returned along with a tree decomposition of G′ of width at most 2k. A consequence is that the fundamental disjoint rooted paths problem can now be solved in O(n2) time. This is the primary motivation for this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. of Algorithms 12 (1991) 308–340

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnborg, S., Courcelle, B., Proskurowski, A., Seese, D.: An algebraic theory of graph reduction. J. Assoc. Comput. Mach. 40 (1993) 1134–1164

    MATH  MathSciNet  Google Scholar 

  3. Arnborg, S., Corneil, D. G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebra Discrete Methods 8 (1987) 277–284 149

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H. L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25:6 (1996) 1305–1317 149, 150, 154

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodlaender, H. L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209:1-2 (1998) 1–45 148

    Article  MATH  MathSciNet  Google Scholar 

  6. Bodlaender, H. L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21:2 (1996) 358–402 151

    Article  MATH  MathSciNet  Google Scholar 

  7. Lagergren, J.: Efficient parallel algorithms for graphs of bounded tree-width. J. Algorithms 20 (1996) 20–44 149

    Article  MATH  MathSciNet  Google Scholar 

  8. Reed, B.: Finding approximate separators and computing treewidth quickly. Proc. 24th STOC (1992) 221–228 149

    Google Scholar 

  9. Reed, B.: Manuscript (1992) 149

    Google Scholar 

  10. Robertson, N., Seymour P. D.: Graph Minors II. Algorithmic aspects of tree-width. J. Algorithms 7 (1986) 309–322 148, 149

    Article  MATH  MathSciNet  Google Scholar 

  11. Robertson, N., Seymour P. D.: Graph Minors VI. Disjoint paths across a disk. J. Combin. Theory Ser. B 45 (1986) 115–138 149

    Article  MathSciNet  Google Scholar 

  12. Robertson, N., Seymour, P.D.: Graph Minors XIII. The disjoint path problem. J. Combin. Theory Ser. B 63 (1995) 65–110 149

    Article  MATH  MathSciNet  Google Scholar 

  13. Robertson, N., Seymour P. D.: Graph Minors VII. Disjoint paths on a surface. J. Combin. Theory Ser. B ?? (1988) 212–254 149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perković, L., Reed, B. (1999). An Improved Algorithm for Finding Tree Decompositions of Small Width. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds) Graph-Theoretic Concepts in Computer Science. WG 1999. Lecture Notes in Computer Science, vol 1665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46784-X_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-46784-X_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66731-5

  • Online ISBN: 978-3-540-46784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics