[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Many-Valued Disjunctive Logic Programs with Probabilistic Semantics

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1730))

Abstract

We present many-valued disjunctive logic programs in which classical disjunctive logic program clauses are extended by a truth value that respects the material implication. Interestingly, these many-valued disjunctive logic programs have both a probabilistic semantics in probabilities over possible worlds and a truth-functional semantics. We then define minimal, perfect, and stable models and show that they have the same properties like their classical counterparts. In particular, perfect and stable models are always minimal models. Under local stratification, the perfect model semantics coincides with the stable model semantics. Finally, we show that some special cases of propositional many-valued disjunctive logic programming under minimal, perfect, and stable model semantics have the same complexity like their classical counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 10, pages 493–574. MIT Press, 1990.

    Google Scholar 

  2. F. Bacchus, A. Grove, J. Y. Halpern, and D. Koller. From statistical knowledge bases to degrees of beliefs. Artif. Intell., 87:75–143, 1996.

    Article  MathSciNet  Google Scholar 

  3. J. F. Baldwin. Evidential support logic programming. Fuzzy Sets Syst., 24:1–26, 1987.

    Article  MATH  Google Scholar 

  4. A. Dekhtyar and V. S. Subrahmanian. Hybrid probabilistic programs. In Proc. Of the 14th International Conference on Logic Programming, pages 391–405, 1997.

    Google Scholar 

  5. T. Eiter and G. Gottlob. Complexity aspects of various semantics for disjunctive databases. In Proc. of the 12th ACM Symposium on Principles of Database Systems, pages 158–167. ACM Press, 1993.

    Google Scholar 

  6. T. Eiter and G. Gottlob. On the computational cost of disjunctive logic programming: Propositional case. Ann. Math. Artif. Intell., 15:289–323, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about probabilities. Inf. Comput., 87:78–128, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Fitting. Bilattices and the semantics of logic programming. J. Logic Program., 11(1-2):91–116, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Y. Halpern. An analysis of first-order logics of probability. Artif. Intell., 46:311–350, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming and its applications. J. Logic Program., 12(3-4):335–367, 1992.

    Article  MathSciNet  Google Scholar 

  11. J.-L. Lassez and M. J. Maher. Optimal fixedpoints of logic programs. Theor. Comput. Sci., 39:15–25, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 2nd ed., 1987.

    MATH  Google Scholar 

  13. J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Programming. MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  14. T. Lukasiewicz. Probabilistic logic programming. In Proc. of the 13th Biennial European Conf. on Artificial Intelligence, pages 388–392. J. Wiley & Sons, 1998.

    Google Scholar 

  15. T. Lukasiewicz. Local probabilistic deduction from taxonomic and probabilistic knowledge-bases over conjunctive events. Int. J. Approx. Reas., 21(1):23–61, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Lukasiewicz. Many-valued disjunctive logic programs with probabilistic semantics. Technical Report 1843-99-09, Institut für Informationssysteme, Technische Universität Wien, 1999. ftp://ftp.kr.tuwien.ac.at/pub/tr/rr9909.ps.gz.

  17. T. Lukasiewicz. Many-valued first-order logics with probabilistic semantics. In Proc. of the Annual Conference of the European Association for Computer Science Logic, 1998, volume 1584 of LNCS, pages 415–429. Springer, 1999.

    Google Scholar 

  18. T. Lukasiewicz. Probabilistic and truth-functional many-valued logic programming. In Proc. of the 29th IEEE International Symposium on Multiple-Valued Logic, pages 236–241, 1999.

    Google Scholar 

  19. T. Lukasiewicz. Probabilistic deduction with conditional constraints over basic events. J. Artif. Intell. Res., 10:199–241, 1999.

    MATH  MathSciNet  Google Scholar 

  20. C. Mateis. A Quantitative Extension of Disjunctive Logic Programming. Doctoral Dissertation, Technische Universität Wien, 1998.

    Google Scholar 

  21. J. Minker. Overview of disjunctive logic programming. Ann. Math. Artif. Intell., 12:1–24, 1994.

    Article  MathSciNet  Google Scholar 

  22. R. T. Ng. Semantics, consistency, and query processing of empirical deductive databases. IEEE Trans. Knowl. Data Eng., 9(1):32–49, 1997.

    Article  Google Scholar 

  23. R. T. Ng and V. S. Subrahmanian. A semantical framework for supporting subjective and conditional probabilities in deductive databases. J. Autom. Reasoning, 10(2):191–235, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  24. R. T. Ng and V. S. Subrahmanian. Stable semantics for probabilistic deductive databases. Inf. Comput., 110:42–83, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Ngo. Probabilistic disjunctive logic programming. In Proc. of the 12th Conf. on Uncertainty in Artificial Intelligence, pages 397–404. Morgan Kaufmann, 1996.

    Google Scholar 

  26. N. J. Nilsson. Probabilistic logic. Artif. Intell., 28:71–88, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  27. D. Poole. Probabilistic Horn abduction and Bayesian networks. Artif. Intell., 64:81–129, 1993.

    Article  MATH  Google Scholar 

  28. T. C. Przymusinski. On the declarative semantics of stratified deductive databases and logic programs. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 193–216. Morgan Kaufmann, 1988.

    Google Scholar 

  29. T. C. Przymusinski. Stable semantics for disjunctive programs. New Generation Comput., 9:401–424, 1991.

    Article  Google Scholar 

  30. N. Rescher. Many-valued Logic. McGraw-Hill, New York, 1969.

    Google Scholar 

  31. M. H. van Emden. Quantitative deduction and its fixpoint theory. J. Logic Program., 3(1):37–53, 1986.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lukasiewicz, T. (1999). Many-Valued Disjunctive Logic Programs with Probabilistic Semantics. In: Gelfond, M., Leone, N., Pfeifer, G. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 1999. Lecture Notes in Computer Science(), vol 1730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46767-X_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-46767-X_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66749-0

  • Online ISBN: 978-3-540-46767-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics