Abstract
We present many-valued disjunctive logic programs in which classical disjunctive logic program clauses are extended by a truth value that respects the material implication. Interestingly, these many-valued disjunctive logic programs have both a probabilistic semantics in probabilities over possible worlds and a truth-functional semantics. We then define minimal, perfect, and stable models and show that they have the same properties like their classical counterparts. In particular, perfect and stable models are always minimal models. Under local stratification, the perfect model semantics coincides with the stable model semantics. Finally, we show that some special cases of propositional many-valued disjunctive logic programming under minimal, perfect, and stable model semantics have the same complexity like their classical counterparts.
Preview
Unable to display preview. Download preview PDF.
References
K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 10, pages 493–574. MIT Press, 1990.
F. Bacchus, A. Grove, J. Y. Halpern, and D. Koller. From statistical knowledge bases to degrees of beliefs. Artif. Intell., 87:75–143, 1996.
J. F. Baldwin. Evidential support logic programming. Fuzzy Sets Syst., 24:1–26, 1987.
A. Dekhtyar and V. S. Subrahmanian. Hybrid probabilistic programs. In Proc. Of the 14th International Conference on Logic Programming, pages 391–405, 1997.
T. Eiter and G. Gottlob. Complexity aspects of various semantics for disjunctive databases. In Proc. of the 12th ACM Symposium on Principles of Database Systems, pages 158–167. ACM Press, 1993.
T. Eiter and G. Gottlob. On the computational cost of disjunctive logic programming: Propositional case. Ann. Math. Artif. Intell., 15:289–323, 1995.
R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about probabilities. Inf. Comput., 87:78–128, 1990.
M. Fitting. Bilattices and the semantics of logic programming. J. Logic Program., 11(1-2):91–116, 1991.
J. Y. Halpern. An analysis of first-order logics of probability. Artif. Intell., 46:311–350, 1990.
M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming and its applications. J. Logic Program., 12(3-4):335–367, 1992.
J.-L. Lassez and M. J. Maher. Optimal fixedpoints of logic programs. Theor. Comput. Sci., 39:15–25, 1985.
J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 2nd ed., 1987.
J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Programming. MIT Press, Cambridge, MA, 1992.
T. Lukasiewicz. Probabilistic logic programming. In Proc. of the 13th Biennial European Conf. on Artificial Intelligence, pages 388–392. J. Wiley & Sons, 1998.
T. Lukasiewicz. Local probabilistic deduction from taxonomic and probabilistic knowledge-bases over conjunctive events. Int. J. Approx. Reas., 21(1):23–61, 1999.
T. Lukasiewicz. Many-valued disjunctive logic programs with probabilistic semantics. Technical Report 1843-99-09, Institut für Informationssysteme, Technische Universität Wien, 1999. ftp://ftp.kr.tuwien.ac.at/pub/tr/rr9909.ps.gz.
T. Lukasiewicz. Many-valued first-order logics with probabilistic semantics. In Proc. of the Annual Conference of the European Association for Computer Science Logic, 1998, volume 1584 of LNCS, pages 415–429. Springer, 1999.
T. Lukasiewicz. Probabilistic and truth-functional many-valued logic programming. In Proc. of the 29th IEEE International Symposium on Multiple-Valued Logic, pages 236–241, 1999.
T. Lukasiewicz. Probabilistic deduction with conditional constraints over basic events. J. Artif. Intell. Res., 10:199–241, 1999.
C. Mateis. A Quantitative Extension of Disjunctive Logic Programming. Doctoral Dissertation, Technische Universität Wien, 1998.
J. Minker. Overview of disjunctive logic programming. Ann. Math. Artif. Intell., 12:1–24, 1994.
R. T. Ng. Semantics, consistency, and query processing of empirical deductive databases. IEEE Trans. Knowl. Data Eng., 9(1):32–49, 1997.
R. T. Ng and V. S. Subrahmanian. A semantical framework for supporting subjective and conditional probabilities in deductive databases. J. Autom. Reasoning, 10(2):191–235, 1993.
R. T. Ng and V. S. Subrahmanian. Stable semantics for probabilistic deductive databases. Inf. Comput., 110:42–83, 1994.
L. Ngo. Probabilistic disjunctive logic programming. In Proc. of the 12th Conf. on Uncertainty in Artificial Intelligence, pages 397–404. Morgan Kaufmann, 1996.
N. J. Nilsson. Probabilistic logic. Artif. Intell., 28:71–88, 1986.
D. Poole. Probabilistic Horn abduction and Bayesian networks. Artif. Intell., 64:81–129, 1993.
T. C. Przymusinski. On the declarative semantics of stratified deductive databases and logic programs. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 193–216. Morgan Kaufmann, 1988.
T. C. Przymusinski. Stable semantics for disjunctive programs. New Generation Comput., 9:401–424, 1991.
N. Rescher. Many-valued Logic. McGraw-Hill, New York, 1969.
M. H. van Emden. Quantitative deduction and its fixpoint theory. J. Logic Program., 3(1):37–53, 1986.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lukasiewicz, T. (1999). Many-Valued Disjunctive Logic Programs with Probabilistic Semantics. In: Gelfond, M., Leone, N., Pfeifer, G. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 1999. Lecture Notes in Computer Science(), vol 1730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46767-X_20
Download citation
DOI: https://doi.org/10.1007/3-540-46767-X_20
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66749-0
Online ISBN: 978-3-540-46767-0
eBook Packages: Springer Book Archive