Abstract
This contribution investigates the usefulness of F. Glover’s path tracing concept within a Genetic Algorithm context for the solution of the multiconstrained knapsack problem (MKP). A state of the art GA is therefore extended by a path tracing component and the Chu/Beasley MKP benchmark problems are used for numerical tests.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Raidl, G.R., An Improved Genetic Algorithm for the Multiconstrained 0-1 Knapsack Problem, Proceedings of the 5th IEEE International Conference on Evolutionary Computation, pp. 207–211, 1998
Chu, P.C. and Beasley, J.E., A Genetic Algorithm for the Multidimensional Knap-sack Problem, Journal of Heuristics, 4: pp. 63–86, 1998
Gottlieb, J., On the Effectivity of Evolutionary Algorithms for the Multidimensional Knapsack Problem, in: Fonlupt, C. et.al.(Eds.): Proceedings of Artificial Evolution, pp. 23–37, Lecture Notes in Computer Science, Vol. 1829, Springer, 2000
Glover, F., Scatter Search and Path Relinking, in: Corne, D. et.al.(Eds.): New Ideas in Optimization, pp. 297–316, McGraw-Hill, 1999
Moscato, P., Memetic Algorithms: A Short Introduction, in: Corne, D. et.al.(Eds.): New Ideas in Optimization, pp. 219–234, McGraw-Hill, 1999
Merz, P. und Freisleben, B., Genetic Local Search for the TSP: New Results, Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, pp. 159–164, IEEE Press, 1997
Merz, P. and Freisleben, B., Fitness Landscapes and Memetic Algorithm Design, in: Corne, D. et.al.(Eds.): New Ideas in Optimization, pp. 245–260, McGraw-Hill, 1999
Reeves, C.R. and Yamada, T., Embedded Path Tracing and Neighbourhood Search Techniques, in: Miettinen, K. et.al.(Eds.): Evolutionary Algorithms in Engineering and Computer Science, pp. 95–111, Wiley, 1998
Reeves, C.R. and Yamada, T., Goal-Oriented Path Tracing Methods, in: Corne, D. et.al.(Eds.): New Ideas in Optimization, pp. 341–356, McGraw-Hill, 1999
Falkenauer, E., Genetic Algorithms and Grouping Problems, Wiley, 1998
Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989
Holland, J.H., Adaption in Artificial Systems, The University of Michigan Press, 1975
Reeves, C.R. (Ed.), Modern Heuristic Techniques for Combinatorial Problems, Blackwell Scientific Publications, 1993
Levenhagen, J., Ein genetischer Algorithmus mit Pfadverfolgung zur Loesung des mehrfach restringierten Rucksackproblems, Diploma thesis, University of Hagen, 2000
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Levenhagen, J., Bortfeldt, A., Gehring, H. (2001). Path Tracing in Genetic Algorithms Applied to the Multiconstrained Knapsack Problem. In: Boers, E.J.W. (eds) Applications of Evolutionary Computing. EvoWorkshops 2001. Lecture Notes in Computer Science, vol 2037. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45365-2_5
Download citation
DOI: https://doi.org/10.1007/3-540-45365-2_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41920-4
Online ISBN: 978-3-540-45365-9
eBook Packages: Springer Book Archive