[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Path Tracing in Genetic Algorithms Applied to the Multiconstrained Knapsack Problem

  • Conference paper
  • First Online:
Applications of Evolutionary Computing (EvoWorkshops 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2037))

Included in the following conference series:

Abstract

This contribution investigates the usefulness of F. Glover’s path tracing concept within a Genetic Algorithm context for the solution of the multiconstrained knapsack problem (MKP). A state of the art GA is therefore extended by a path tracing component and the Chu/Beasley MKP benchmark problems are used for numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Raidl, G.R., An Improved Genetic Algorithm for the Multiconstrained 0-1 Knapsack Problem, Proceedings of the 5th IEEE International Conference on Evolutionary Computation, pp. 207–211, 1998

    Google Scholar 

  2. Chu, P.C. and Beasley, J.E., A Genetic Algorithm for the Multidimensional Knap-sack Problem, Journal of Heuristics, 4: pp. 63–86, 1998

    Article  MATH  Google Scholar 

  3. Gottlieb, J., On the Effectivity of Evolutionary Algorithms for the Multidimensional Knapsack Problem, in: Fonlupt, C. et.al.(Eds.): Proceedings of Artificial Evolution, pp. 23–37, Lecture Notes in Computer Science, Vol. 1829, Springer, 2000

    Chapter  Google Scholar 

  4. Glover, F., Scatter Search and Path Relinking, in: Corne, D. et.al.(Eds.): New Ideas in Optimization, pp. 297–316, McGraw-Hill, 1999

    Google Scholar 

  5. Moscato, P., Memetic Algorithms: A Short Introduction, in: Corne, D. et.al.(Eds.): New Ideas in Optimization, pp. 219–234, McGraw-Hill, 1999

    Google Scholar 

  6. Merz, P. und Freisleben, B., Genetic Local Search for the TSP: New Results, Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, pp. 159–164, IEEE Press, 1997

    Google Scholar 

  7. Merz, P. and Freisleben, B., Fitness Landscapes and Memetic Algorithm Design, in: Corne, D. et.al.(Eds.): New Ideas in Optimization, pp. 245–260, McGraw-Hill, 1999

    Google Scholar 

  8. Reeves, C.R. and Yamada, T., Embedded Path Tracing and Neighbourhood Search Techniques, in: Miettinen, K. et.al.(Eds.): Evolutionary Algorithms in Engineering and Computer Science, pp. 95–111, Wiley, 1998

    Google Scholar 

  9. Reeves, C.R. and Yamada, T., Goal-Oriented Path Tracing Methods, in: Corne, D. et.al.(Eds.): New Ideas in Optimization, pp. 341–356, McGraw-Hill, 1999

    Google Scholar 

  10. Falkenauer, E., Genetic Algorithms and Grouping Problems, Wiley, 1998

    Google Scholar 

  11. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989

    Google Scholar 

  12. Holland, J.H., Adaption in Artificial Systems, The University of Michigan Press, 1975

    Google Scholar 

  13. Reeves, C.R. (Ed.), Modern Heuristic Techniques for Combinatorial Problems, Blackwell Scientific Publications, 1993

    Google Scholar 

  14. Levenhagen, J., Ein genetischer Algorithmus mit Pfadverfolgung zur Loesung des mehrfach restringierten Rucksackproblems, Diploma thesis, University of Hagen, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levenhagen, J., Bortfeldt, A., Gehring, H. (2001). Path Tracing in Genetic Algorithms Applied to the Multiconstrained Knapsack Problem. In: Boers, E.J.W. (eds) Applications of Evolutionary Computing. EvoWorkshops 2001. Lecture Notes in Computer Science, vol 2037. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45365-2_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45365-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41920-4

  • Online ISBN: 978-3-540-45365-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics