[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Adaptive Mapping for Developmental Genetic Programming

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2038))

Included in the following conference series:

Abstract

In this article we introduce a general framework for constructing an adaptive genotype-to-phenotype mapping, and apply it to developmental genetic programming. In this preliminary investigation, we run a series of comparative experiments on a simple test problem. Our results show that the adaptive algorithm is able to outperform its non-adaptive counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wolfgang Banzhaf. Genotype-phenotype-mapping and neutral variation-a case study in genetic programming. In Y. Davidor, H.-P. Schwefel, and R. Männer, editors, Proceedings of Parallel Problem Solving from Nature III, pages 322–332, Berlin, 1994. Springer.

    Google Scholar 

  2. David E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley Publishing Company Inc., 1989.

    Google Scholar 

  3. Robert E Keller and Wolfgang Banzhaf. Genetic programming using genotypephenotype mappings from linear genomes to linear phenotypes. In John R Koza, David E Goldberg, David B Fogel, and Rick L Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Conference, Cambridge, USA, 1996. MIT Press.

    Google Scholar 

  4. Robert E Keller and Wolfgang Banzhaf. The evolution of genetic code in genetic programming. In Wolfgang Banzhaf, Jason Daida, Agoston E Eiben, Max H Garzon, Mark Jakiela, and Robert E Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference, volume 2, pages 1077–1082, San Francisco, California, 1999. Morgan Kaufmann. ISBN 1-55860-611-4.

    Google Scholar 

  5. John R. Koza. Genetic Programming-On the Programming of Computers by Means of Natural Selection. The MIT Press, Massachusetts, Cambridge, 1992. ISBN 0-262-11170-5.

    MATH  Google Scholar 

  6. William B. Langdon and Ricardo Poli. An analysis of the MAX problem in genetic programming. In John R. Koza, K. Deb, Marco Darigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, GP97: Proceedings of the Second Annual Conference on Genetic Programming, pages 222–230, Stanford University, USA, July 1997. Morgan-Kaufmann.

    Google Scholar 

  7. Steve Margetts and Antonia J. Jones. Phlegmatic mappings for function optimisation with genetic algorithms. In Darrell Whitley, David Goldberg, Erick Cantu-Paz, Lee Spector, Ian Parmee, and Hans-Georg Beyer, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), pages 82–89, Las Vegas, Nevada, USA, 10-12 July 2000. Morgan Kaufmann.

    Google Scholar 

  8. Timothy Perkis. Stack-based genetic programming. In Proceedings of the 1994 IEEE World Congress on Computational Intelligence, pages 148–153. IEEE Press, 1994.

    Google Scholar 

  9. Mitchell A. Potter. The Design and Analysis of a ComputationalModel of Cooperative Coevolution. Phd thesis, George Mason University, Fairfax, Virginia, Spring 1997. Supervised by Kenneth A.De Jong.

    Google Scholar 

  10. Robert Sedgewick. Algorithms in C++. Addison-Wesley Publishing Company Inc., 1992. ISBN 0-201-51059-6.

    Google Scholar 

  11. Lee Spector and Kilian Stoffel. Ontogenetic programming. In John R Koza, David E Goldberg, David B Fogel, and Rick L Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Conference, Cambridge MA, 1996.MIT Press.

    Google Scholar 

  12. Kilian Stoffel and Lee Spector. High-performance, parallel, stack-based genetic programming. In John R Koza, David E Goldberg, David B Fogel, and Rick L Riolo editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages 224–229, Cambridge MA, 1996. The MIT Press.

    Google Scholar 

  13. Astro Teller. Advances in Genetic Programming II, chapter 3: Evolving Programmers: The Co-evolution of Intelligent Recombination Operators. MIT Press, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Margetts, S., Jones, A.J. (2001). An Adaptive Mapping for Developmental Genetic Programming. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds) Genetic Programming. EuroGP 2001. Lecture Notes in Computer Science, vol 2038. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45355-5_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45355-5_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41899-3

  • Online ISBN: 978-3-540-45355-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics